OpenJ9虚拟机中JSR166TestCase测试崩溃问题分析与解决
问题背景
在OpenJ9虚拟机的测试过程中,发现了一个与并发测试相关的严重问题。当运行JSR166TestCase测试套件中的SynchronousQueue20Test::testUnfairDoesntLeak测试时,虚拟机发生了段错误(Segmentation fault)并崩溃。这个问题在aarch64架构的Linux系统上被观察到,特别是在JDK24版本的测试环境中。
错误现象
测试运行时,虚拟机抛出了未处理的段错误异常,错误信息显示vmState为0x0002000f。核心的错误断言来自MethodMetaData.c文件中的jitGetMapsFromPC函数,该函数断言stackMapTable->_tableSize必须大于0,但这个条件未能满足。
从堆栈跟踪可以看出,错误发生在垃圾回收过程中,具体是在扫描continuation栈帧时触发的。调用链从GC线程开始,经过扫描器、分发器,最终在JIT编译器的元数据处理部分失败。
技术分析
这个问题涉及到OpenJ9虚拟机的多个核心组件:
-
JIT编译器:负责将Java字节码编译为本地机器代码,并生成相关的元数据信息,包括栈映射表(stack map table)。
-
垃圾回收器:在并发标记和扫描过程中,需要遍历对象图并处理continuation对象的栈帧。
-
栈帧遍历:当GC需要扫描continuation对象的栈帧时,会使用栈映射表来正确识别栈上的引用。
问题的根本原因在于,当GC尝试扫描一个continuation对象的栈帧时,发现关联的JIT编译方法的栈映射表大小为0,这违反了虚拟机的内部不变式。栈映射表是JIT编译器生成的关键元数据,用于描述方法在不同程序计数器(PC)位置时的栈和寄存器状态,这对于精确垃圾回收和栈帧遍历至关重要。
解决方案
经过开发团队的调查,确认这个问题与另一个已报告的问题(编号21390)重复。在确认修复后,测试团队重新启用了相关的测试用例:
- 在本地环境中验证JSR166TestCase测试套件能够稳定通过
- 更新测试排除列表,移除之前为规避此问题而添加的排除项
- 确认修复后的版本不再出现该崩溃问题
技术意义
这个问题的解决保证了OpenJ9虚拟机在aarch64架构上处理并发continuation对象时的稳定性。特别是对于Java并发工具类(如SynchronousQueue)的正确性验证提供了保障。栈映射表的正确处理对于虚拟机的以下功能至关重要:
- 精确垃圾回收
- 栈帧遍历和continuation处理
- 调试和诊断功能
- 异常处理机制
通过解决这个问题,OpenJ9虚拟机在复杂并发场景下的可靠性得到了提升,特别是在处理虚拟线程(virtual threads)和continuation相关的用例时表现更加稳定。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00