Keras NLP v0.21.0发布:新增Xception、Qwen等多项模型与功能升级
Keras NLP是TensorFlow生态系统中专注于自然语言处理任务的深度学习库,它建立在Keras框架之上,为开发者提供了高效、模块化的NLP模型构建工具。最新发布的v0.21.0版本带来了多项重要更新,包括新增多个前沿模型架构、改进权重加载机制等关键特性。
新增模型架构
Xception图像分类模型
本次更新引入了Xception深度卷积神经网络架构,这是一种极致的Inception架构变体。Xception通过深度可分离卷积替代传统Inception模块,在保持模型性能的同时显著减少了参数量。该模型特别适合移动端和边缘计算场景下的图像分类任务。
Qwen系列大语言模型
v0.21.0新增了Qwen2.5大语言模型支持,包括基础语言模型和指令调优模型,参数规模从0.5B到72B不等。Qwen系列模型在中文处理和多轮对话任务上表现出色,其指令调优版本特别适合构建对话系统和智能助手应用。
Qwen MoE混合专家模型
新增的Qwen MoE是基于Transformer的混合专家(Mixture of Experts)解码器语言模型。其基础版本在运行时仅激活2.7B参数,通过动态路由机制实现了计算效率的大幅提升。这种架构特别适合需要处理多样化输入分布的任务。
Mixtral稀疏混合专家模型
Mixtral是一种预训练的生成式稀疏混合专家模型,包含预训练和指令调优版本,运行时激活参数为7B。与密集模型相比,Mixtral在保持性能的同时显著降低了计算成本。
Moonshine语音识别模型
新增的Moonshine模型专注于语音识别任务,采用端到端深度学习架构,能够直接将音频信号转换为文本输出。该模型在噪声鲁棒性和实时性方面做了特别优化。
CSPNet分类模型
Cross Stage Partial Network(CSPNet)是一种高效的图像分类架构,通过特征图的部分跨阶段连接减少了计算冗余。该模型在保持精度的同时提升了推理速度,适合实时视觉应用。
Llama3支持
v0.21.0扩展了对Llama系列模型的支持,新增了Llama 3.1和3.2版本。这些模型在长文本理解和代码生成任务上表现优异。
核心功能改进
分片权重支持
新版本为KerasPresetSaver和KerasPresetLoader添加了分片权重支持,默认最大分片大小为10GB。这一改进使得超大模型的保存和加载更加高效,特别是在内存受限的环境中。分片机制会自动将大型权重矩阵分割为多个文件,降低了单次内存需求。
其他重要改进
- 修复了PaliGemmaVitEncoder和Gemma3VisionEncoderBlock的输出形状计算问题
- 优化了ReversibleEmbedding层的int8量化逻辑
- 增加了COCO ID到类别名称的映射工具
- 改进了音频到文本预处理器的类定义
- 增强了模型导出和转换脚本的稳定性
技术影响与应用场景
本次更新显著扩展了Keras NLP在以下几个领域的能力:
-
多模态应用:新增的Xception和CSPNet为视觉任务提供了更多选择,而Moonshine模型则增强了音频处理能力,使得构建视听多模态系统更加便捷。
-
大模型部署:Qwen和Mixtral等大模型的加入,配合分片权重支持,使得在资源受限环境中部署数十亿参数模型成为可能。
-
高效推理:混合专家架构的引入为需要高吞吐量的应用场景提供了计算效率更高的选择,特别是在需要实时响应的对话系统中。
-
中文NLP:Qwen系列模型的加入显著增强了框架对中文任务的支持,为中文开发者提供了更强大的基础模型选择。
Keras NLP v0.21.0通过这些更新,进一步巩固了其作为生产级NLP工具库的地位,为开发者提供了从研究到部署的全流程支持。新加入的模型架构和功能改进,使得开发者能够更高效地构建和部署先进的自然语言处理和跨模态应用。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00