VXE Table 3.15.0版本发布:性能优化与功能增强
VXE Table是一个功能强大的Vue表格组件库,提供了丰富的表格功能和灵活的配置选项。在3.15.0版本中,开发团队对表格组件进行了多项重要改进,包括API优化、性能提升和问题修复。
API优化与兼容性处理
本次版本对部分API进行了优化调整,同时保持了良好的向下兼容性:
-
行选择配置:将
row-config.currentMethod参数迁移为current-row-config.beforeSelectMethod,新命名更加语义化,明确了其作用范围。 -
列选择配置:类似地,
column-config.currentMethod参数被current-column-config.beforeSelectMethod取代。 -
事件重命名:
current-change事件更名为current-row-change,使事件命名更加清晰明确。虽然旧API仍然可用,但建议开发者逐步迁移到新API。
这些变更体现了VXE Table团队对API设计一致性的重视,通过更规范的命名帮助开发者更好地理解和使用组件功能。
功能增强
3.15.0版本引入了多项新功能:
-
新增事件:
current-row-change和current-column-change事件,提供更细粒度的行列选择变化监听current-row-disabled和current-column-disabled事件,用于处理禁用状态下的行列选择
-
自定义列增强:优化了自定义列功能,使开发者能够更灵活地配置表格列。
-
虚拟合并优化:大幅提升了虚拟滚动与合并功能的渲染性能,特别是在处理大数据量时表现更为出色。
问题修复
本次版本修复了多个影响用户体验的问题:
-
修复了筛选面板在特定场景下的显示问题,提高了组件的稳定性。
-
解决了树形结构表格中展开行无效的问题,确保了树形功能的可靠性。
-
修正了标题提示中HTML显示无效的问题,增强了提示功能的实用性。
-
修复了滚动条显示异常的问题,提升了表格的视觉一致性。
性能优化
3.15.0版本在性能方面做出了显著改进:
-
渲染性能提升:通过优化虚拟滚动与合并的实现,大幅减少了渲染开销,使表格在处理大量数据时更加流畅。
-
交互体验优化:改进了列宽拖拽的样式和交互效果,使调整列宽的操作更加自然直观。
这些性能优化使得VXE Table在处理复杂业务场景时表现更加出色,特别是在大数据量下的响应速度有了明显提升。
升级建议
对于正在使用VXE Table的项目,建议评估以下升级策略:
-
检查项目中是否使用了被标记为兼容保留的API,计划逐步迁移到新API。
-
测试性能敏感场景,特别是涉及大数据量或复杂合并的情况,验证性能提升效果。
-
评估新事件是否能简化现有代码逻辑,考虑采用更细粒度的事件处理方式。
VXE Table 3.15.0版本的发布,不仅解决了多个实际问题,还通过API优化和性能提升为开发者提供了更好的开发体验。这些改进使得VXE Table在功能丰富性和性能表现上达到了新的水平,值得开发者关注和升级。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00