Ragas项目中Faithfulness指标计算问题的分析与解决
2025-05-26 06:02:07作者:牧宁李
问题背景
在Ragas项目(一个用于评估检索增强生成系统的开源框架)中,用户在使用Faithfulness(忠实度)指标评估单个样本时遇到了问题。当按照官方文档示例执行代码时,系统会返回警告信息"WARNING:ragas.metrics._faithfulness:No statements were generated from the answer."并输出NaN分数。
问题根源分析
经过深入分析,发现问题的核心在于Ragas框架中句子分割逻辑的不一致性。具体表现为:
-
句子分割标识符不匹配:Faithfulness指标要求回答中的句子必须以特定标点符号(如句号、感叹号等)结尾才能被识别为有效语句。当回答字符串不包含这些标识符时,系统会返回空响应。
-
指标间逻辑不一致:
- AnswerCorrectness指标仅检查以句号结尾的句子
- Faithfulness指标检查多种标点符号(句号、中文句号、感叹号等)
- FactualCorrectness指标则完全不进行此类过滤
技术解决方案
针对这一问题,Ragas开发团队已经通过PR #1826修复了这一问题,主要改进包括:
- 统一了各指标间的句子分割逻辑
- 优化了语句生成的处理流程
- 增强了系统对不完整标点符号回答的兼容性
临时解决方案建议
在等待官方版本发布期间,用户可以采取以下临时解决方案:
-
确保回答包含标点符号:在回答字符串末尾添加句号或其他有效标点符号
-
自定义指标子类:通过继承原有指标类并重写
_create_statements()
方法,移除标点符号过滤逻辑 -
预处理回答文本:在评估前对回答文本进行标准化处理,确保包含必要的标点符号
最佳实践建议
为避免类似问题,建议开发者在实际应用中:
- 对生成式AI的输出进行标准化预处理
- 在构建评估数据集时确保回答文本格式规范
- 考虑实现自定义的句子分割逻辑以适应特定领域需求
总结
这一问题揭示了评估框架中预处理逻辑一致性的重要性。Ragas团队的快速响应和修复体现了开源社区对用户体验的重视。随着评估指标的不断完善,Ragas框架在检索增强生成系统评估领域的实用性和可靠性将进一步提升。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~053CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0371- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
307
337

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
18
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58