EvoJAX 开源项目教程
1. 项目介绍
EvoJAX 是一个可扩展的、通用性的硬件加速神经进化工具包。它基于 JAX 库构建,使得神经进化算法能够在多个 TPU/GPU 上并行运行。EvoJAX 通过将进化算法、神经网络和任务全部实现为 NumPy 代码,并即时编译以在加速器上运行,从而实现了非常高的性能。
EvoJAX 不仅支持监督学习、强化学习等任务,还适用于生成艺术等创新领域。项目的目标是让进化计算能够在各种任务中高效运行,特别是在使用加速器的情况下,显著缩短训练时间。
2. 项目快速启动
安装 JAX
首先,需要安装 JAX。请根据 JAX 的官方安装指南进行安装,并选择是否启用 GPU/TPU 支持。
pip install --upgrade pip
pip install --upgrade "jax[cuda]" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
安装 EvoJAX
安装 EvoJAX 可以通过 PyPI 或直接从 GitHub 仓库安装。
# 从 PyPI 安装
pip install evojax
# 或从 GitHub 仓库安装
pip install git+https://github.com/google/evojax.git@main
快速启动示例
以下是一个简单的示例,展示了如何使用 EvoJAX 进行 MNIST 分类任务的训练。
import evojax
from evojax.task.mnist import MNIST
from evojax.policy.convnet import ConvNetPolicy
from evojax.algo.pgpe import PGPE
# 初始化任务
task = MNIST()
# 初始化策略网络
policy = ConvNetPolicy(input_dim=task.obs_shape, output_dim=task.act_shape)
# 初始化算法
algo = PGPE(pop_size=100, param_size=policy.num_params)
# 初始化训练器
trainer = evojax.trainer.Trainer(
policy=policy,
task=task,
algo=algo,
max_iter=1000,
log_interval=100,
test_interval=500,
n_repeats=1,
n_evaluations=1,
seed=0,
log_dir='./logs'
)
# 开始训练
trainer.run()
3. 应用案例和最佳实践
监督学习任务
EvoJAX 可以用于解决监督学习任务,例如 MNIST 分类。通过使用卷积神经网络(ConvNet)策略,EvoJAX 能够在单个 GPU 上在 5 分钟内达到超过 98% 的测试准确率。
强化学习任务
EvoJAX 也适用于强化学习任务,如 Cart-Pole Swing Up。通过在 JAX 中实现经典控制任务,EvoJAX 能够显著加速训练过程。
生成艺术
EvoJAX 还可以用于生成艺术任务,如抽象绘画。通过使用进化策略,EvoJAX 能够在单个 GPU 上高效生成艺术作品,这在以前是不可行的。
4. 典型生态项目
JAX
JAX 是一个用于高性能数值计算的库,特别适用于机器学习和科学计算。EvoJAX 基于 JAX 构建,充分利用了 JAX 的即时编译(JIT)和自动微分功能。
Brax
Brax 是一个在 JAX 中实现的微分物理引擎。EvoJAX 可以与 Brax 集成,用于训练物理模拟任务,如机器人运动控制。
Slime Volleyball Gym Environment
Slime Volleyball 是一个经典的强化学习环境,EvoJAX 可以用于训练神经网络策略,以控制虚拟角色进行排球比赛。
通过这些生态项目的结合,EvoJAX 能够扩展其应用范围,支持更多复杂的任务和场景。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00