EvoJAX 开源项目教程
1. 项目介绍
EvoJAX 是一个可扩展的、通用性的硬件加速神经进化工具包。它基于 JAX 库构建,使得神经进化算法能够在多个 TPU/GPU 上并行运行。EvoJAX 通过将进化算法、神经网络和任务全部实现为 NumPy 代码,并即时编译以在加速器上运行,从而实现了非常高的性能。
EvoJAX 不仅支持监督学习、强化学习等任务,还适用于生成艺术等创新领域。项目的目标是让进化计算能够在各种任务中高效运行,特别是在使用加速器的情况下,显著缩短训练时间。
2. 项目快速启动
安装 JAX
首先,需要安装 JAX。请根据 JAX 的官方安装指南进行安装,并选择是否启用 GPU/TPU 支持。
pip install --upgrade pip
pip install --upgrade "jax[cuda]" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
安装 EvoJAX
安装 EvoJAX 可以通过 PyPI 或直接从 GitHub 仓库安装。
# 从 PyPI 安装
pip install evojax
# 或从 GitHub 仓库安装
pip install git+https://github.com/google/evojax.git@main
快速启动示例
以下是一个简单的示例,展示了如何使用 EvoJAX 进行 MNIST 分类任务的训练。
import evojax
from evojax.task.mnist import MNIST
from evojax.policy.convnet import ConvNetPolicy
from evojax.algo.pgpe import PGPE
# 初始化任务
task = MNIST()
# 初始化策略网络
policy = ConvNetPolicy(input_dim=task.obs_shape, output_dim=task.act_shape)
# 初始化算法
algo = PGPE(pop_size=100, param_size=policy.num_params)
# 初始化训练器
trainer = evojax.trainer.Trainer(
policy=policy,
task=task,
algo=algo,
max_iter=1000,
log_interval=100,
test_interval=500,
n_repeats=1,
n_evaluations=1,
seed=0,
log_dir='./logs'
)
# 开始训练
trainer.run()
3. 应用案例和最佳实践
监督学习任务
EvoJAX 可以用于解决监督学习任务,例如 MNIST 分类。通过使用卷积神经网络(ConvNet)策略,EvoJAX 能够在单个 GPU 上在 5 分钟内达到超过 98% 的测试准确率。
强化学习任务
EvoJAX 也适用于强化学习任务,如 Cart-Pole Swing Up。通过在 JAX 中实现经典控制任务,EvoJAX 能够显著加速训练过程。
生成艺术
EvoJAX 还可以用于生成艺术任务,如抽象绘画。通过使用进化策略,EvoJAX 能够在单个 GPU 上高效生成艺术作品,这在以前是不可行的。
4. 典型生态项目
JAX
JAX 是一个用于高性能数值计算的库,特别适用于机器学习和科学计算。EvoJAX 基于 JAX 构建,充分利用了 JAX 的即时编译(JIT)和自动微分功能。
Brax
Brax 是一个在 JAX 中实现的微分物理引擎。EvoJAX 可以与 Brax 集成,用于训练物理模拟任务,如机器人运动控制。
Slime Volleyball Gym Environment
Slime Volleyball 是一个经典的强化学习环境,EvoJAX 可以用于训练神经网络策略,以控制虚拟角色进行排球比赛。
通过这些生态项目的结合,EvoJAX 能够扩展其应用范围,支持更多复杂的任务和场景。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00