使用pgq/skytools-legacy实现多分区表合并复制指南
2025-07-07 06:17:33作者:段琳惟
概述
在分布式数据库系统中,数据通常会被分区存储以提高性能。但在数据分析场景下,我们往往需要将所有分区的数据合并到一个完整的表中。pgq/skytools-legacy项目中的Londiste3工具提供了一种高效的解决方案,能够将多个分区数据库中的相同表结构数据合并复制到一个目标数据库中。
应用场景
这种合并复制方案特别适用于以下场景:
- 使用PL/Proxy等分区方案进行OLTP(在线事务处理)
- 需要将分区数据合并用于数据仓库分析
- 需要集中式报表生成
- 跨分区数据聚合分析
环境准备
本教程将演示最简单的双分区合并复制场景:
- 两个分区数据库:part1和part2
- 一个完整数据库:full1
配置步骤
1. 配置分区数据库节点
首先需要在每个分区数据库上设置Londiste3的根节点(root node)。
part1数据库配置
创建配置文件conf/l3_part1_q_part1.ini:
[londiste3]
job_name = l3_part1_q_part1
db = dbname=part1
queue_name = l3_part1_q
logfile = log/%(job_name)s.log
pidfile = pid/%(job_name)s.pid
part2数据库配置
创建配置文件conf/l3_part2_q_part2.ini:
[londiste3]
job_name = l3_part2_q_part2
db = dbname=part2
queue_name = l3_part2_q
logfile = log/%(job_name)s.log
pidfile = pid/%(job_name)s.pid
创建根节点
执行以下命令创建根节点:
londiste3 -v conf/l3_part1_q_part1.ini create-root part1_root dbname=part1
londiste3 -v conf/l3_part2_q_part2.ini create-root part2_root dbname=part2
2. 配置完整数据库节点
在完整数据库上需要为每个分区设置一个接收节点(leaf node)。
接收节点配置
创建两个配置文件:
conf/l3_part1_q_full1.ini:
[londiste3]
job_name = l3_part1_q_full1
db = dbname=full1
queue_name = l3_part1_q
logfile = log/%(job_name)s.log
pidfile = pid/%(job_name)s.pid
conf/l3_part2_q_full1.ini:
[londiste3]
job_name = l3_part2_q_full1
db = dbname=full1
queue_name = l3_part2_q
logfile = log/%(job_name)s.log
pidfile = pid/%(job_name)s.pid
创建接收节点
执行以下命令创建接收节点:
londiste3 -v conf/l3_part1_q_full1.ini create-leaf merge_part1_full1 dbname=full1 --provider=dbname=part1
londiste3 -v conf/l3_part2_q_full1.ini create-leaf merge_part2_full1 dbname=full1 --provider=dbname=part2
3. 启动消息队列服务
在开始复制前,需要启动PGQ消息队列服务。
创建配置文件conf/pgqd.ini:
[pgqd]
database_list = part1,part2,full1
logfile = log/pgqd.log
pidfile = pid/pgqd.pid
启动服务:
pgqd -v -d conf/pgqd.ini
4. 启动复制工作进程
启动两个复制工作进程:
londiste3 -v -d conf/l3_part1_q_full1.ini worker
londiste3 -v -d conf/l3_part2_q_full1.ini worker
设置复制表
1. 创建测试表
在分区数据库上创建测试表:
psql -d "part1" -c "create table mydata (id int4 primary key, data text)"
psql -d "part2" -c "create table mydata (id int4 primary key, data text)"
2. 添加表到复制队列
将表添加到根节点的复制队列:
londiste3 -v conf/l3_part1_q_part1.ini add-table mydata
londiste3 -v conf/l3_part2_q_part2.ini add-table mydata
3. 插入测试数据
向分区表插入初始数据:
psql -d "part1" -c "insert into mydata values (1, 'part1')"
psql -d "part2" -c "insert into mydata values (2, 'part2')"
4. 在完整数据库上订阅表
使用以下命令在完整数据库上创建并订阅表:
londiste3 -v conf/l3_part1_q_full1.ini add-table mydata --create --merge-all
参数说明:
--create:在目标数据库上创建表--merge-all:从所有包含此表的队列中合并数据
5. 验证数据复制
插入更多测试数据:
psql -d "part1" -c "insert into mydata values (4 + 1, 'part1')"
psql -d "part2" -c "insert into mydata values (4 + 2, 'part2')"
等待几秒后检查完整数据库:
psql -d "full1" -c "select * from mydata order by id"
预期结果应包含来自两个分区的所有数据。
系统状态检查
1. 检查表信息
查看完整数据库上的表订阅状态:
psql -d "full1" -c "select * from londiste.table_info order by queue_name"
merge_state为'ok'表示初始复制过程已成功完成。
注意事项
- 主键冲突:确保各分区表中的主键不会冲突,否则合并复制会失败
- 性能考虑:大量数据复制可能影响生产数据库性能,建议在低峰期执行
- 网络稳定性:确保各数据库节点间网络连接稳定
- 监控:建议设置监控机制跟踪复制延迟
总结
通过本教程,我们成功配置了从两个分区数据库到一个完整数据库的合并复制方案。这种架构既保持了OLTP场景下的分区性能优势,又满足了数据仓库分析的全量数据需求。pgq/skytools-legacy提供的Londiste3工具简化了这一复杂过程的实现。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350