JOYRPC:一款强大的Java RPC框架
项目介绍
JOYRPC 是一款基于Java实现的RPC服务框架,旨在提供高性能、高可扩展性的分布式服务调用解决方案。JOYRPC在总结内部服务框架经验的基础上,进行了完全重新设计,支持全异步、微内核和插件化,旨在满足现代微服务架构的需求。
项目技术分析
微内核架构
JOYRPC采用微内核设计,所有核心模块都支持用户自定义,框架本身只提供了默认实现。这种设计使得JOYRPC具有极高的灵活性和可扩展性,用户可以根据自身需求定制RPC服务的各个环节。
纯异步处理
JOYRPC的接口完全支持CompletableFuture类型返回值,Provider端的业务逻辑可以异步执行,从而显著提升服务端的吞吐量。同时,Filter调用链也实现了全异步化,进一步优化了性能。
协商机制
在连接建立成功后,Consumer和Provider会进行协商逻辑,确认协议版本、序列化可用列表、压缩算法列表等,确保在多版本协议中,编解码、序列化、压缩等插件实现的兼容性。
多注册中心支持
Provider端支持多注册中心同时注册,注册中心插件化,默认提供了memory、zk、etcd等注册中心实现,用户也可以自行扩展。
插件化多协议
JOYRPC提供协议插件,默认支持joyrpc、http、grpc等多种协议。特别值得一提的是,JOYRPC的grpc协议支持与原生grpc相互调用,无需修改Java接口即可实现grpc调用。
优雅上下线
JOYRPC支持优雅的上下线机制。Provider发布时,启动与注册逻辑完全分开,先启动后注册,同时支持接口预热,确保优雅上线。Provider下线时,会向Consumer端发送下线通知,处理完剩余请求后关闭端口,实现优雅下线,Consumer端无感知。
插件化编解码、序列化、压缩
JOYRPC的解码、序列化、压缩算法全部插件化可扩展,用户可以自定义序列化方式。框架默认采用hessian协议序列化,兼容性更好,同时也提供了性能更高的protostuff协议序列化。
预热权重与增强重试
Provider端支持接口预热,通过配置预热插件,启动时触发预热逻辑。Consumer端支持预热权重,新Provider节点启动时,权重逐渐增大,流量也会逐渐增大,保证服务调用可用率。此外,JOYRPC还提供了更加合理的重试逻辑,支持重试节点筛选插件和业务分组重试,确保安全重试。
自适应负载均衡
Consumer端可配置自适应负载均衡,根据Provider节点的TP指标、异常数进行自适应负载控制,保证服务调用的稳定性。
序列化安全与分布式事务
JOYRPC默认采用白名单方式增强序列化安全,并集成了Seata分布式事务插件,确保分布式环境下的数据一致性。
云原生支持
JOYRPC支持以应用的服务名称来进行注册,而不是以接口注册服务,更符合云原生架构的需求。
项目及技术应用场景
JOYRPC适用于各种需要高性能、高可扩展性RPC服务的场景,特别是在微服务架构中表现尤为出色。无论是大型互联网应用、企业级分布式系统,还是云原生应用,JOYRPC都能提供稳定、高效的服务调用解决方案。
项目特点
- 微内核架构:高度灵活和可扩展,用户可自定义核心模块。
- 纯异步处理:提升服务端和调用端的吞吐量。
- 协商机制:确保多版本协议的兼容性。
- 多注册中心支持:灵活选择和扩展注册中心。
- 插件化多协议:支持多种协议,包括grpc。
- 优雅上下线:确保服务无感知上下线。
- 插件化编解码、序列化、压缩:用户可自定义序列化方式。
- 预热权重与增强重试:提升服务可用率。
- 自适应负载均衡:确保服务调用的稳定性。
- 序列化安全与分布式事务:增强安全性和数据一致性。
- 云原生支持:更符合现代云原生架构的需求。
结语
JOYRPC作为一款功能强大、设计先进的RPC框架,无论是从性能、扩展性还是安全性上,都表现出色。如果你正在寻找一款能够满足现代微服务架构需求的RPC框架,JOYRPC无疑是一个值得考虑的选择。立即访问JOYRPC GitHub,开始你的高性能RPC服务之旅吧!
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00