YOSO-ai项目中深度搜索图的技术实现与优化
在YOSO-ai项目中,深度搜索图(Deep Search Graph)的实现是一个关键的技术挑战。本文将深入探讨该功能的架构设计、技术难点以及优化方案。
深度搜索图的核心设计
深度搜索图的核心思想是通过递归或迭代的方式,在网页内容中不断挖掘更深层次的信息。项目团队最初考虑了几种不同的实现方案:
-
递归方案:尝试使用节点递归调用的方式实现深度搜索,但发现图引擎在处理递归时容易出现栈溢出问题,即使设置了停止条件也难以稳定运行。
-
图迭代器方案:采用GraphIterator对fetch/parse/rag/search_link序列进行多次迭代。与递归方案不同,这种方案在构造函数中预构建整个图结构,避免了运行时循环带来的复杂性。
-
混合模式设计:团队最终决定实现两种工作模式:
- "经济模式":在发现任何相关信息后立即返回
- "精确模式":持续爬取直到没有相关链接为止,确保获取最全面的信息
关键技术组件
深度搜索图的实现涉及多个关键组件:
-
计划节点(Plan Node):负责维护搜索状态,包括:
- 可用信息
- 可用端点
- 已访问端点
- 搜索轮次
- 用户查询
- 早期退出标志
- 缺失信息查询
-
条件节点(Conditional Node):用于实现早期返回机制,判断是否满足以下条件:
- 轮次是否达到最大值
- 是否已收集足够信息
-
并行搜索图(Parallel Search Graph):包含以下子组件:
- 链接重排节点(Rerank Link Node)
- 图迭代器节点(Graph Iterator Node)
- 多个并行的探索图实例
-
合并节点(Merge Node):负责合并来自不同路径的结果,包括:
- 信息合并
- 端点合并
实现细节与优化
在具体实现过程中,团队针对以下关键点进行了深入讨论和优化:
-
链接处理优化:
- 修改搜索链接节点,使其直接返回带有简短描述的链接,避免不必要的fetch操作
- 实现链接重排节点,使用简单的向量数据库对链接和描述进行排序
-
信息充分性判断:
- 采用两阶段条件判断机制
- 第一阶段判断轮次是否耗尽
- 第二阶段评估信息是否充分
-
并行探索机制:
- 支持同时探索多个子图
- 每个子图包含完整的fetch-parse-RAG-answer生成流程
- 通过fork-join模式实现并行处理
架构演进与思考
项目团队在架构设计过程中经历了几次重要的思考转变:
-
从信号机制到无信号设计:最初考虑使用信号机制实现节点间通信,但后来决定保持节点接口的简洁性,避免在核心节点中引入信号概念。
-
从运行时循环到预构建图:将运行时循环转换为图构造时的预构建,使整个系统更符合现有的图引擎工作模式。
-
模块化验证:深度搜索图的成功实现验证了项目核心模块化系统的表达能力,证明其能够支持复杂的爬取操作。
未来发展方向
基于当前实现,项目团队确定了几个潜在的改进方向:
-
智能停止条件:引入更智能的算法来判断何时停止深度搜索,而不仅依赖于固定轮次。
-
链接相关性评估:开发更精确的链接相关性评估模型,提高深度搜索的效率。
-
结果去重与融合:优化结果合并节点,实现更智能的信息去重和融合。
-
资源消耗控制:引入资源监控机制,防止深度搜索消耗过多计算资源。
深度搜索图的实现是YOSO-ai项目中的一个重要里程碑,它不仅扩展了系统的功能边界,也为后续更复杂的图结构实现提供了宝贵经验。通过模块化设计和清晰的接口定义,项目成功地将复杂功能分解为可管理的组件,为未来的功能扩展奠定了坚实基础。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00