ArchUnit 1.4.0版本发布:Java架构测试框架的重要更新
ArchUnit是一个基于Java的轻量级架构测试框架,它允许开发人员通过简单的单元测试来验证代码库是否符合预定义的架构规则。通过ArchUnit,团队可以确保代码遵循分层架构、包依赖规则、命名约定等架构约束,从而保持代码库的整洁和可维护性。
Java 24支持与性能优化
ArchUnit 1.4.0版本最显著的变化之一是增加了对Java 24的支持,包括对class文件主版本68的兼容。这使得使用最新Java版本的开发团队能够无缝集成ArchUnit到他们的开发流程中。
在性能方面,新版本对传递性依赖检查进行了优化。传递性依赖检查是ArchUnit中一个常用功能,用于验证类或包之间的依赖关系是否符合预期。通过这次优化,大型项目中的架构测试执行时间将显著减少,这对于持续集成环境尤为重要。
新增与改进的编码规则
1.4.0版本引入了几个重要的编码规则改进:
-
新增日期时间类使用规则:
GeneralCodingRules.OLD_DATE_AND_TIME_CLASSES_SHOULD_NOT_BE_USED
规则可以帮助团队避免使用过时的日期时间API(如java.util.Date),转而使用java.time包中的现代API。 -
测试类位置规则改进:
GeneralCodingRules.testClassesShouldResideInTheSamePackageAsImplementation
规则现在更加智能,不会因为某些实现类所在包中没有测试类而误报失败。这一改进使得规则在实际项目中更加实用。
JUnit集成增强
对于使用JUnit的团队,1.4.0版本带来了两个重要改进:
-
修复了测试过滤器问题:解决了当使用junit.testFilter时可能导致测试失败的问题,使得在大型项目中选择性运行架构测试成为可能。
-
支持元注解:
@AnalyzeClasses
注解现在可以作为元注解使用,这意味着开发人员可以创建自定义的组合注解,简化测试类的配置。
文档完善与内部改进
除了功能增强外,1.4.0版本还包含多项文档和内部改进:
-
修正了用户指南中关于
@AnalyzeClasses
默认行为的错误描述,确保开发者能够正确理解和使用这一重要注解。 -
对切片(Slices)相关的文档进行了澄清,帮助开发者更好地理解和使用这一高级功能。
在内部架构方面,项目已经开始向JUnit 5迁移做准备,同时将Gradle构建工具从7.6升级到了8.12版本。持续集成环境也扩展到了支持JDK 21,确保框架能够在最新的Java环境中稳定运行。
总结
ArchUnit 1.4.0版本通过新增功能、性能优化和问题修复,进一步巩固了其作为Java架构测试首选工具的地位。无论是支持最新Java版本、优化大型项目中的性能,还是提供更加灵活的测试配置选项,这些改进都使得ArchUnit能够更好地服务于各种规模的Java项目。对于注重代码质量和架构整洁的团队来说,升级到1.4.0版本将带来显著的开发体验提升。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









