项目配置与启动教程
2025-04-21 12:14:53作者:魏侃纯Zoe
1. 项目目录结构及介绍
本项目是基于深度学习的韩文OCR(Optical Character Recognition,光学字符识别)项目。项目目录结构如下:
ocr_kor/
├── data/ # 存储训练、验证和测试数据
├── deep-text-recognition-benchmark/ # 深度文本识别基准测试代码
├── document/ # 存储相关文档,包括论文和海报
├── exprement1/ # 实验一的相关代码和结果
├── exprement2/ # 实验二的相关代码和结果
├── LICENSE.md # 项目许可证信息
├── README.md # 项目说明文件
├── requirements.txt # 项目依赖的Python包列表
└── fonts/ # 存储所需的字体文件
详细说明:
data/:包含了生成训练数据的脚本和训练好的lmdb格式的数据文件。deep-text-recognition-benchmark/:包含了训练和测试深度学习模型的代码。document/:存放项目的论文和海报等文档。exprement1/和exprement2/:分别存放两次实验的代码和结果。LICENSE.md:项目的Apache-2.0许可证信息。README.md:项目的详细说明文件。requirements.txt:项目运行所需的Python包列表。fonts/:包含了项目中使用到的字体文件。
2. 项目的启动文件介绍
本项目的主要启动文件位于deep-text-recognition-benchmark/目录中,以下是一些重要的启动文件:
train.py:用于启动模型训练过程的Python脚本。test.py:用于启动模型测试过程的Python脚本。demo.py:用于演示模型在指定图像上的识别效果。
例如,要启动训练过程,可以使用以下命令:
CUDA_VISIBLE_DEVICES=0 python3 train.py \
--train_data data/data_lmdb_release/training \
--valid_data data/data_lmdb_release/validation \
--select_data basic-skew --batch_ratio 0.5-0.5 \
--Transformation TPS \
--FeatureExtraction VGG \
--SequenceModeling None \
--Prediction Attn \
--data_filtering_off
3. 项目的配置文件介绍
本项目的配置主要通过命令行参数进行,但在实际应用中,可能会需要修改requirements.txt文件来确保所有依赖的Python包都已安装。
requirements.txt文件示例内容如下:
torch==1.2.0
torchvision==0.4.0
pillow==7.0.0
numpy==1.19.2
opencv-python==4.2.0
lmdb==0.9.7
这个文件列出了项目运行所依赖的Python包及其版本号。在开始运行项目前,应确保这些包已正确安装。可以使用以下命令来安装:
pip install -r requirements.txt
以上就是本项目的基本配置与启动教程。在开始实际操作前,请确保已经仔细阅读了各部分的说明,并正确安装了所有依赖。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
167
187
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
255
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
261
92