RFBNet 开源项目使用教程
2024-09-14 16:13:42作者:舒璇辛Bertina
1. 项目目录结构及介绍
RFBNet 项目的目录结构如下:
RFBNet/
├── data/
│ └── scripts/
├── doc/
├── layers/
├── models/
├── utils/
├── .gitignore
├── LICENSE
├── README.md
├── make.sh
├── test_RFB.py
└── train_RFB.py
目录结构介绍
- data/: 包含数据集相关的脚本和配置文件。
- scripts/: 包含下载和处理数据集的脚本。
- doc/: 包含项目的文档文件。
- layers/: 包含模型中使用的自定义层和模块。
- models/: 包含模型的定义和实现。
- utils/: 包含各种实用工具和辅助函数。
- .gitignore: Git 忽略文件配置。
- LICENSE: 项目许可证文件。
- README.md: 项目介绍和使用说明。
- make.sh: 编译和构建项目的脚本。
- test_RFB.py: 用于测试和评估模型的脚本。
- train_RFB.py: 用于训练模型的脚本。
2. 项目启动文件介绍
RFBNet 项目的主要启动文件是 train_RFB.py 和 test_RFB.py。
train_RFB.py
train_RFB.py 是用于训练 RFBNet 模型的脚本。它包含了训练过程中所需的参数配置和训练逻辑。
主要功能
- 参数配置: 可以通过命令行参数指定训练数据集、模型版本、图像大小等。
- 训练逻辑: 实现了模型的训练过程,包括数据加载、模型初始化、损失计算、优化器更新等。
使用示例
python train_RFB.py -d VOC -v RFB_vgg -s 300
test_RFB.py
test_RFB.py 是用于测试和评估已训练模型的脚本。它可以根据指定的模型权重文件进行评估,并输出评估结果。
主要功能
- 模型加载: 加载预训练的模型权重文件。
- 评估逻辑: 对测试数据集进行评估,计算并输出 mAP 等评估指标。
使用示例
python test_RFB.py -d VOC -v RFB_vgg -s 300 --trained_model /path/to/model/weights
3. 项目的配置文件介绍
RFBNet 项目中没有显式的配置文件,但可以通过命令行参数在 train_RFB.py 和 test_RFB.py 中进行配置。
常用配置参数
- -d: 指定数据集,可选值为
VOC或COCO。 - -v: 指定模型版本,可选值为
RFB_VGG、RFB_E_VGG或RFB_mobile。 - -s: 指定图像大小,可选值为
300或512。 - --trained_model: 指定预训练模型的权重文件路径。
示例配置
python train_RFB.py -d VOC -v RFB_vgg -s 300
python test_RFB.py -d VOC -v RFB_vgg -s 300 --trained_model /path/to/model/weights
通过这些配置参数,用户可以灵活地调整训练和测试的设置,以适应不同的需求和环境。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355