LMDeploy中使用PytorchEngine加载AWQ量化模型的技术实践
2025-06-04 06:16:42作者:虞亚竹Luna
在模型部署领域,量化技术是优化推理性能的重要手段。本文将详细介绍如何在LMDeploy项目中使用PytorchEngine加载AWQ(Activation-aware Weight Quantization)量化模型的技术实践。
AWQ量化模型简介
AWQ是一种先进的4-bit权重量化技术,相比传统的量化方法,它能够更好地保持模型精度。这种技术特别适合在资源受限的环境中部署大语言模型,可以在几乎不损失精度的情况下显著减少显存占用。
环境准备
要使用AWQ量化模型,首先需要确保环境配置正确。关键依赖包括:
- PyTorch 2.3.1或更高版本
- AutoAWQ库
- LMDeploy 0.5.3或更高版本
模型量化步骤
- 使用LMDeploy的量化工具对原始模型进行量化:
lmdeploy lite auto_awq /path/to/original_model --work-dir /path/to/quantized_model
这个命令会将原始模型量化为w4a16格式(4-bit权重,16-bit激活),并保存到指定目录。
加载量化模型
量化完成后,可以通过PytorchEngine加载量化后的模型进行推理:
from lmdeploy import pipeline, PytorchEngineConfig
# 配置Pytorch引擎
backend_config = PytorchEngineConfig(tp=1) # tp表示张量并行数
# 创建推理管道
pipe = pipeline('/path/to/quantized_model', backend_config=backend_config)
常见问题解决
在实际使用中,可能会遇到"ModuleNotFoundError: No module named 'awq'"的错误。这是因为AutoAWQ库没有正确安装。解决方法很简单:
pip install autoawq
安装完成后,再次尝试加载模型即可。
性能考量
使用AWQ量化模型可以带来显著的性能优势:
- 显存占用减少约4倍
- 推理速度提升
- 几乎不损失模型精度
特别适合在资源有限的设备上部署大模型。
适用模型
目前LMDeploy支持多款模型的AWQ量化,包括但不限于:
- Qwen系列模型
- GLM系列模型
- LLaMA系列模型
总结
通过LMDeploy的PytorchEngine加载AWQ量化模型是一种高效的模型部署方案。它结合了先进的量化技术和灵活的部署框架,为开发者提供了在资源受限环境下运行大语言模型的可能。掌握这一技术可以显著提升模型部署的效率和灵活性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
774
192
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
756
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249