首页
/ LMDeploy中使用PytorchEngine加载AWQ量化模型的技术实践

LMDeploy中使用PytorchEngine加载AWQ量化模型的技术实践

2025-06-04 12:35:18作者:虞亚竹Luna

在模型部署领域,量化技术是优化推理性能的重要手段。本文将详细介绍如何在LMDeploy项目中使用PytorchEngine加载AWQ(Activation-aware Weight Quantization)量化模型的技术实践。

AWQ量化模型简介

AWQ是一种先进的4-bit权重量化技术,相比传统的量化方法,它能够更好地保持模型精度。这种技术特别适合在资源受限的环境中部署大语言模型,可以在几乎不损失精度的情况下显著减少显存占用。

环境准备

要使用AWQ量化模型,首先需要确保环境配置正确。关键依赖包括:

  • PyTorch 2.3.1或更高版本
  • AutoAWQ库
  • LMDeploy 0.5.3或更高版本

模型量化步骤

  1. 使用LMDeploy的量化工具对原始模型进行量化:
lmdeploy lite auto_awq /path/to/original_model --work-dir /path/to/quantized_model

这个命令会将原始模型量化为w4a16格式(4-bit权重,16-bit激活),并保存到指定目录。

加载量化模型

量化完成后,可以通过PytorchEngine加载量化后的模型进行推理:

from lmdeploy import pipeline, PytorchEngineConfig

# 配置Pytorch引擎
backend_config = PytorchEngineConfig(tp=1)  # tp表示张量并行数

# 创建推理管道
pipe = pipeline('/path/to/quantized_model', backend_config=backend_config)

常见问题解决

在实际使用中,可能会遇到"ModuleNotFoundError: No module named 'awq'"的错误。这是因为AutoAWQ库没有正确安装。解决方法很简单:

pip install autoawq

安装完成后,再次尝试加载模型即可。

性能考量

使用AWQ量化模型可以带来显著的性能优势:

  • 显存占用减少约4倍
  • 推理速度提升
  • 几乎不损失模型精度

特别适合在资源有限的设备上部署大模型。

适用模型

目前LMDeploy支持多款模型的AWQ量化,包括但不限于:

  • Qwen系列模型
  • GLM系列模型
  • LLaMA系列模型

总结

通过LMDeploy的PytorchEngine加载AWQ量化模型是一种高效的模型部署方案。它结合了先进的量化技术和灵活的部署框架,为开发者提供了在资源受限环境下运行大语言模型的可能。掌握这一技术可以显著提升模型部署的效率和灵活性。

登录后查看全文
热门项目推荐
相关项目推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8