DeepGEMM项目中TMA加载策略的优化思考
2025-06-08 12:21:31作者:咎竹峻Karen
在DeepGEMM这个高性能矩阵乘法计算项目中,关于张量内存访问(TMA)的加载策略引发了一个值得探讨的技术优化点。项目实现中采用了TMA来加载左侧矩阵(LHS)、左侧缩放因子以及右侧矩阵(RHS)数据,但最初并未对右侧缩放因子(RHS scales)采用同样的TMA加载方式。
TMA技术背景
张量内存访问(Tensor Memory Access, TMA)是现代GPU架构中提供的高效内存访问机制。它允许线程束(warp)以更优化的方式访问内存,特别适合处理规整的张量数据。在矩阵运算这类计算密集型任务中,合理利用TMA可以显著提升内存带宽利用率。
原始实现分析
项目最初的设计选择是:
- 对LHS矩阵使用TMA加载
- 对LHS缩放因子使用TMA加载
- 对RHS矩阵使用TMA加载
- 但对RHS缩放因子未采用TMA加载
这种不对称设计引发了技术讨论。经过分析,开发者确认对RHS缩放因子同样可以采用TMA加载方式,这不会带来任何技术障碍。
优化考量
在GPU计算中,内存访问模式的选择往往需要考虑多个因素:
- 内存访问效率:TMA能够提供更高的带宽利用率
- 计算与内存访问的重叠:合理调度可以隐藏内存延迟
- 资源竞争:不同内存访问方式可能共享有限的硬件资源
特别值得注意的是,在数学运算线程组(Math Warp-Groups)中,TMA存储操作可以与加载操作重叠执行。这可能是一开始未对RHS缩放因子使用TMA加载的潜在原因——为了与存储操作形成更好的流水线。
技术验证与改进
经过验证,确认对RHS缩放因子使用TMA加载是完全可行的方案。这一优化已经被实现在项目代码中,展示了良好的性能表现。这种改进体现了在GPU高性能计算中,对内存访问模式的精细调优可以带来可观的性能提升。
实践意义
这个技术讨论点对于理解GPU高性能计算中的内存访问优化具有典型意义。它展示了:
- 对称性设计在性能优化中的重要性
- 硬件特性(TMA)的充分利用方法
- 计算与内存访问流水线的平衡考量
对于从事GPU高性能计算的开发者,这个案例提供了宝贵的设计思路:在实现核心算法时,应当全面考虑所有数据访问路径的优化可能性,即使是看似次要的数据流也可能成为性能瓶颈。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
242
278
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
695
369
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
882