【亲测免费】 SpliceAI 项目教程
2026-01-23 05:26:06作者:苗圣禹Peter
1. 项目介绍
SpliceAI 是一个基于深度学习的工具,用于识别剪接变体。该工具能够注释遗传变异对其剪接效应的预测影响,如 Jaganathan 等人在 Cell 2019 中描述的那样。SpliceAI 的注释适用于所有可能的替换、1 个碱基插入和 1-4 个碱基删除,这些注释可用于学术和非营利性用途,其他用途需要从 Illumina, Inc. 获得商业许可证。
2. 项目快速启动
安装 SpliceAI
SpliceAI 可以通过 pip 或 conda 进行安装:
pip install spliceai
或者:
conda install -c bioconda spliceai
从 GitHub 安装
你也可以从 GitHub 仓库安装 SpliceAI:
git clone https://github.com/Illumina/SpliceAI.git
cd SpliceAI
python setup.py install
使用 SpliceAI
SpliceAI 可以通过命令行运行:
spliceai -I input.vcf -O output.vcf -R genome.fa -A grch37
参数说明:
-I: 输入包含感兴趣变异的 VCF 文件。-O: 输出包含 SpliceAI 预测的 VCF 文件。-R: 参考基因组 fasta 文件。-A: 基因注释文件。
3. 应用案例和最佳实践
案例 1:基因变异注释
假设你有一个包含基因变异的 VCF 文件 input.vcf,你可以使用 SpliceAI 对其进行注释:
spliceai -I input.vcf -O annotated.vcf -R genome.fa -A grch37
案例 2:自定义序列评分
SpliceAI 还可以用于对自定义序列进行评分:
from keras.models import load_model
from pkg_resources import resource_filename
from spliceai.utils import one_hot_encode
import numpy as np
input_sequence = 'CGATCTGACGTGGGTGTCATCGCATTATCGATATTGCAT'
context = 10000
paths = ('models/spliceai[].h5'.format(x) for x in range(1, 6))
models = [load_model(resource_filename('spliceai', x)) for x in paths]
x = one_hot_encode('N'*(context//2) + input_sequence + 'N'*(context//2))[None, :]
y = np.mean([models[m].predict(x) for m in range(5)], axis=0)
acceptor_prob = y[0, :, 1]
donor_prob = y[0, :, 2]
4. 典型生态项目
TensorFlow
SpliceAI 依赖于 TensorFlow 进行深度学习模型的训练和推理。TensorFlow 是一个开源的机器学习框架,广泛用于各种深度学习任务。
Bioconda
Bioconda 是一个用于生物信息学软件的 Conda 渠道,提供了 SpliceAI 的安装包,方便用户快速安装和使用。
Keras
Keras 是一个高级神经网络 API,能够运行在 TensorFlow 之上,SpliceAI 使用 Keras 加载和使用预训练的模型。
通过以上模块的介绍,你可以快速上手并深入了解 SpliceAI 项目。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
Ascend Extension for PyTorch
Python
343
410
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
602
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
暂无简介
Dart
775
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
895