Apache SkyWalking 中 OTEL 收集器目标节点指标聚合问题解析
2025-05-08 01:11:32作者:蔡丛锟
背景概述
在 Apache SkyWalking 监控系统中,当使用 OpenTelemetry (OTEL) 收集器以节点为目标收集指标时,发现了一个重要的指标聚合问题。这个问题最初是在 ClickHouse 监控的代码审查过程中被发现的,但进一步调查表明这是一个普遍存在于多种数据库和中间件监控中的共性问题。
问题本质
问题的核心在于服务级别指标的聚合方式。当前实现中,当多个节点(如数据库节点)的指标被收集时,系统无法正确区分以下两种情况:
- 跨节点聚合:同一时间点来自不同节点的指标数据
 - 时间序列聚合:同一节点在不同时间点上报的指标数据
 
由于这种区分能力的缺失,系统在进行下采样(如默认的AVG计算)时,会将所有数据点简单平均,而无法正确反映服务级别的真实聚合指标。
技术细节分析
在具体实现层面,问题表现为:
- 当OTEL收集器从节点A和节点B分别收集指标时,这些指标会相互重叠
 - 系统无法识别这些指标是来自不同节点还是同一节点在不同时间点的采样
 - 导致最终的服务级别指标计算不准确
 
举例说明,假设有:
- 节点A在时间T1和T2上报指标
 - 节点B在时间T1上报指标
 
系统会将这3个数据点(N=2来自节点A,M=1来自节点B)进行简单平均,而这不是服务级别指标的正确聚合方式。
影响范围
经过社区调查,这个问题影响到了多种数据库和中间件的监控实现,包括但不限于:
- MongoDB
 - MySQL/MariaDB
 - PostgreSQL
 - Redis
 - Nginx
 - APISIX
 - RabbitMQ等
 
值得注意的是,并非所有监控实现都存在此问题。例如Elasticsearch、Kafka和Pulsar的监控由于采用了集群级别的API或正确的聚合逻辑,不受此问题影响。
解决方案
社区针对此问题提出了多方面的解决方案:
- 指标标签化:将服务指标设计为带标签的值,确保不同节点的指标能够被正确区分
 - MQE聚合:在查询阶段使用Metrics Query Engine (MQE)进行正确的数据合并
 - 多标签支持:通过增强的
aggregate_labels功能,支持按指定标签进行聚合 
对于APISIX等特定组件的监控,需要等待aggregate_labels功能增强后才能完全修复。
最佳实践建议
基于此问题的经验,建议在实现服务监控时注意以下几点:
- 明确指标来源:清楚区分节点级别和服务级别的指标
 - 合理设计标签:使用标签系统正确标识指标来源
 - 选择适当聚合:根据指标性质选择SUM、AVG等合适的聚合方式
 - 全面测试验证:在多种节点配置和负载情况下验证监控数据的准确性
 
总结
Apache SkyWalking社区对此问题的快速响应和全面修复展现了项目对监控数据准确性的高度重视。通过这次问题的解决,不仅修复了现有实现中的缺陷,还为未来类似场景提供了设计参考和实现规范。对于使用SkyWalking进行服务监控的用户,建议关注相关组件的更新,确保使用已修复的版本来获取准确的监控数据。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
272
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
231
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
444