EasyScheduler 任务依赖血缘关系解析优化方案
2025-05-17 18:36:14作者:胡易黎Nicole
背景与现状分析
在分布式任务调度系统EasyScheduler中,任务依赖关系是核心功能之一。当前系统中,依赖任务的数据结构设计较为复杂,这给血缘关系分析带来了挑战。血缘关系分析对于理解任务间的依赖关系、影响范围分析以及系统性能优化都具有重要意义。
问题描述
现有的依赖任务数据结构存在以下主要问题:
- 血缘关系解析效率低下
- 缺乏专门的血缘关系存储结构
- 历史数据处理困难
- 血缘关系可视化支持不足
这些问题限制了系统在复杂依赖场景下的表现,也影响了用户体验和系统扩展性。
解决方案设计
血缘关系表设计
新增t_ds_process_lineage表专门存储流程定义的血缘关系信息,表结构设计如下:
CREATE TABLE `t_ds_process_lineage` (
`id` int NOT NULL AUTO_INCREMENT,
`process_definition_code` bigint NOT NULL,
`process_definition_version` int NOT NULL,
`task_deifnition_code` bigint NOT NULL,
`task_definition_version` int NOT NULL,
`dept_project_code` bigint NOT NULL COMMENT '依赖项目编码',
`dept_process_definition_code` bigint NOT NULL COMMENT '依赖流程定义编码',
`dept_task_definition_code` bigint NOT NULL COMMENT '依赖任务定义编码',
`create_time` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
`update_time` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '更新时间',
PRIMARY KEY (`id`),
KEY `idx_process_code_version` (`process_definition_code`,`process_definition_version`),
KEY `idx_task_code_version` (`task_deifnition_code`,`task_definition_version`),
KEY `idx_dept_code` (`dept_project_code`,`dept_process_definition_code`,`dept_task_definition_code`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci;
关键字段说明
- 流程定义信息:记录当前流程的编码和版本
- 任务定义信息:记录当前任务的编码和版本
- 依赖信息:记录依赖的项目、流程和任务编码
- 索引设计:针对常用查询场景优化索引
功能实现方案
- 血缘解析逻辑:在依赖任务的增删改查操作末尾添加血缘分析解析
- 历史数据处理:提供批量初始化脚本处理现有数据
- 工作流血缘代码:修改现有血缘关系处理逻辑
- 性能优化:通过专门的血缘表提高查询效率
技术优势
- 查询性能提升:专用血缘表结构简化了复杂查询
- 扩展性增强:为未来血缘分析功能提供基础
- 数据一致性:通过事务保证血缘关系与任务依赖同步
- 版本控制:支持流程和任务的多版本血缘追踪
实施计划
- 数据库变更:首先部署新表结构
- 代码修改:实现血缘解析逻辑
- 数据迁移:执行历史数据初始化脚本
- 测试验证:进行端到端测试确保稳定性
- 性能监控:上线后持续监控系统表现
预期效果
该方案实施后,系统将获得以下改进:
- 血缘关系分析速度显著提升
- 系统能够支持更复杂的依赖场景
- 血缘可视化功能实现基础
- 系统整体可维护性增强
总结
通过引入专门的流程血缘关系表并优化相关处理逻辑,EasyScheduler的任务依赖管理能力将得到显著提升。这一改进不仅解决了当前的血缘分析性能问题,还为系统未来的功能扩展奠定了坚实基础。该方案设计考虑了实际应用场景中的各种需求,在保证系统稳定性的同时提供了良好的扩展性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
411
3.16 K
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
676
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
323
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
React Native鸿蒙化仓库
JavaScript
265
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868