EasyScheduler 任务依赖血缘关系解析优化方案
2025-05-17 00:25:44作者:胡易黎Nicole
背景与现状分析
在分布式任务调度系统EasyScheduler中,任务依赖关系是核心功能之一。当前系统中,依赖任务的数据结构设计较为复杂,这给血缘关系分析带来了挑战。血缘关系分析对于理解任务间的依赖关系、影响范围分析以及系统性能优化都具有重要意义。
问题描述
现有的依赖任务数据结构存在以下主要问题:
- 血缘关系解析效率低下
- 缺乏专门的血缘关系存储结构
- 历史数据处理困难
- 血缘关系可视化支持不足
这些问题限制了系统在复杂依赖场景下的表现,也影响了用户体验和系统扩展性。
解决方案设计
血缘关系表设计
新增t_ds_process_lineage表专门存储流程定义的血缘关系信息,表结构设计如下:
CREATE TABLE `t_ds_process_lineage` (
`id` int NOT NULL AUTO_INCREMENT,
`process_definition_code` bigint NOT NULL,
`process_definition_version` int NOT NULL,
`task_deifnition_code` bigint NOT NULL,
`task_definition_version` int NOT NULL,
`dept_project_code` bigint NOT NULL COMMENT '依赖项目编码',
`dept_process_definition_code` bigint NOT NULL COMMENT '依赖流程定义编码',
`dept_task_definition_code` bigint NOT NULL COMMENT '依赖任务定义编码',
`create_time` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
`update_time` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '更新时间',
PRIMARY KEY (`id`),
KEY `idx_process_code_version` (`process_definition_code`,`process_definition_version`),
KEY `idx_task_code_version` (`task_deifnition_code`,`task_definition_version`),
KEY `idx_dept_code` (`dept_project_code`,`dept_process_definition_code`,`dept_task_definition_code`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci;
关键字段说明
- 流程定义信息:记录当前流程的编码和版本
- 任务定义信息:记录当前任务的编码和版本
- 依赖信息:记录依赖的项目、流程和任务编码
- 索引设计:针对常用查询场景优化索引
功能实现方案
- 血缘解析逻辑:在依赖任务的增删改查操作末尾添加血缘分析解析
- 历史数据处理:提供批量初始化脚本处理现有数据
- 工作流血缘代码:修改现有血缘关系处理逻辑
- 性能优化:通过专门的血缘表提高查询效率
技术优势
- 查询性能提升:专用血缘表结构简化了复杂查询
- 扩展性增强:为未来血缘分析功能提供基础
- 数据一致性:通过事务保证血缘关系与任务依赖同步
- 版本控制:支持流程和任务的多版本血缘追踪
实施计划
- 数据库变更:首先部署新表结构
- 代码修改:实现血缘解析逻辑
- 数据迁移:执行历史数据初始化脚本
- 测试验证:进行端到端测试确保稳定性
- 性能监控:上线后持续监控系统表现
预期效果
该方案实施后,系统将获得以下改进:
- 血缘关系分析速度显著提升
- 系统能够支持更复杂的依赖场景
- 血缘可视化功能实现基础
- 系统整体可维护性增强
总结
通过引入专门的流程血缘关系表并优化相关处理逻辑,EasyScheduler的任务依赖管理能力将得到显著提升。这一改进不仅解决了当前的血缘分析性能问题,还为系统未来的功能扩展奠定了坚实基础。该方案设计考虑了实际应用场景中的各种需求,在保证系统稳定性的同时提供了良好的扩展性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
279
React Native鸿蒙化仓库
JavaScript
270
328