ViDeNN 的安装和配置教程
2025-05-20 05:52:15作者:江焘钦
项目基础介绍
ViDeNN(Deep Blind Video Denoising)是一个基于深度学习的视频去噪项目。该项目旨在通过神经网络去除视频中的噪声,如加性白高斯噪声和低光照条件下的噪声。ViDeNN 不需要任何关于输入噪声视频内容的先验信息,即可在盲目条件下工作。该项目主要使用 Python 编程语言。
项目使用的关键技术和框架
ViDeNN 使用了以下关键技术和框架:
- TensorFlow:一个用于机器学习的开源软件库。
- Convolutional Neural Networks (CNN):卷积神经网络,用于处理图像和视频数据。
- ** Fully Convolutional Networks (FCN)**:全卷积网络,可以处理不同大小的输入。
安装和配置准备工作
在开始安装 ViDeNN 之前,请确保您的系统满足以下要求:
- Python 版本小于或等于 3.6。
- 安装了
ffmpeg和unrar。 - 至少 25GB 的空闲磁盘空间(用于训练数据集)。
- 如果您打算使用 GPU 加速,还需要安装与 GPU 兼容的 CUDA。
安装步骤
克隆项目
首先,需要从 GitHub 上克隆 ViDeNN 项目:
git clone https://github.com/clausmichele/ViDeNN.git
cd ViDeNN
安装依赖
然后,安装项目所需的 Python 依赖:
pip install -r requirements.txt
配置环境
确保您的环境变量配置正确,以便 TensorFlow 和其他库能够正常工作。
准备数据集
根据项目说明,您可能需要下载数据集并准备相应的文件夹结构。具体步骤请参考项目中的 dataset_preparation.sh 脚本。
训练模型
训练模型之前,需要按照项目中的指南执行数据预处理和训练脚本。这通常包括以下步骤:
- 运行
add_noise_spatialCNN.py脚本添加噪声。 - 运行
generate_patches_spatialCNN.py脚本生成训练所需的补丁。 - 运行
main_spatialCNN.py开始空间 CNN 的训练。 - 类似地,对
Temp3-CNN执行上述步骤,以进行时间维度的训练。
测试和验证
训练完成后,您可以使用项目中的脚本测试和验证模型的效果。
以上步骤为 ViDeNN 的基本安装和配置指南。根据实际需要,您可能还需要进一步的调整和优化。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
445
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
823
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
142
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19