ZendSkeletonApplication 技术文档
1. 安装指南
使用 Composer 安装
ZendSkeletonApplication 项目推荐使用 Composer 进行安装。如果你还没有安装 Composer,请根据 Composer 文档 进行安装。
安装步骤如下:
$ composer create-project -sdev zendframework/skeleton-application path/to/install
安装完成后,你可以使用 PHP 内置的 Web 服务器立即测试项目:
$ cd path/to/install
$ php -S 0.0.0.0:8080 -t public
# 或者使用 Composer 别名:
$ composer run --timeout 0 serve
这将启动一个绑定到所有网络接口的 CLI 服务器,端口为 8080。你可以通过访问 http://localhost:8080/ 来查看 Zend Framework 的欢迎页面。
注意: 内置的 CLI 服务器仅用于开发环境。
开发模式
项目默认包含 zf-development-mode,并提供了三个别名来使用它:
$ composer development-enable # 启用开发模式
$ composer development-disable # 禁用开发模式
$ composer development-status # 检查开发模式是否启用
你可以在 config/development.config.php.dist 中提供仅用于开发的模块和引导配置,在 config/autoload/development.local.php.dist 中提供仅用于开发的应用配置。启用开发模式时,这些文件将被复制并去掉 .dist 后缀,禁用开发模式时,这些复制的文件将被删除。
开发模式在项目安装过程中会自动启用。如果你对上述 .dist 配置文件进行了更改,你需要禁用并重新启用开发模式,或者手动更新没有 .dist 后缀的文件。
使用 Vagrant
项目包含一个基于 Ubuntu 16.04 的 Vagrantfile,配置了 Apache2 和 PHP 7.0。你可以使用以下命令启动它:
$ vagrant up
启动后,你可以在虚拟机中运行 Composer。例如,以下命令将安装依赖项:
$ vagrant ssh -c 'composer install'
以下命令将更新依赖项:
$ vagrant ssh -c 'composer update'
Vagrant 将主机端口 8080 映射到虚拟机的端口 80,你可以通过访问 http://localhost:8080/ 来查看站点。
使用 docker-compose
项目提供了一个 docker-compose.yml 文件,用于与 docker-compose 一起使用。你可以使用以下命令构建并启动镜像:
$ docker-compose up -d --build
启动后,你可以通过访问 http://localhost:8080 来查看站点。
你也可以从镜像中运行 Composer。容器环境名为 "zf",因此你需要传递该值给 docker-compose run:
$ docker-compose run zf composer install
2. 项目的使用说明
运行单元测试
要运行项目提供的单元测试,你需要执行以下操作之一:
-
在初始项目创建期间,选择安装 MVC 测试支持。
-
在初始项目创建后,安装 zend-test:
$ composer require --dev zendframework/zend-test
安装测试支持后,你可以使用以下命令运行测试:
$ ./vendor/bin/phpunit
如果你需要为 PHPUnit 测试设置进行本地修改,请将 phpunit.xml.dist 复制到 phpunit.xml 并编辑新文件;后者在运行测试时具有优先级,并且被版本控制忽略。
3. 项目 API 使用文档
项目 API 的使用文档可以通过查看项目中的控制器和模块来获取。具体 API 的使用方法和参数说明可以在项目的代码注释中找到。
4. 项目安装方式
项目的安装方式主要有以下几种:
- 使用 Composer 安装:通过 Composer 创建一个新的 Zend Framework 项目。
- 使用 Vagrant:通过 Vagrant 启动一个虚拟机环境进行开发。
- 使用 docker-compose:通过 docker-compose 启动一个 Docker 容器进行开发。
每种安装方式的具体步骤已在“安装指南”部分详细说明。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00