Google Benchmark库中bytes_per_second与items_per_second指标解析
2025-05-24 21:52:22作者:魏献源Searcher
在使用Google Benchmark进行性能测试时,开发人员发现了一个关于bytes_per_second和items_per_second指标显示不一致的问题。经过深入分析,这实际上是由于单位显示方式造成的理解偏差,而非真正的功能缺陷。
问题现象
在测试Parquet列读取性能时,开发人员设置了以下基准测试代码:
state.SetBytesProcessed(state.iterations() * num_levels * sizeof(int16_t));
state.SetItemsProcessed(state.iterations() * num_levels);
理论上,bytes_per_second应该是items_per_second的两倍(因为每个项目是2字节的int16_t)。但实际输出显示:
bytes_per_second=11.5877G/s items_per_second=6.22113G/s
这两个数值的比例接近但不完全等于2:1,引发了开发者的困惑。
深入调查
开发者通过添加日志输出来追踪计算过程:
ARROW_LOG(INFO) << "iterations: " << state.iterations() << ", expected b/s " << state.iterations() * num_levels * sizeof(int16_t);
state.SetBytesProcessed(state.iterations() * num_levels * sizeof(int16_t));
ARROW_LOG(INFO) << "iterations: " << state.iterations() << ", expected i/s " << state.iterations() * num_levels;
state.SetItemsProcessed(state.iterations() * num_levels);
日志显示最终迭代次数为538976次,计算得出:
- 总字节数:8,727,099,392
 - 总项目数:4,363,549,696
 
手动计算结果与报告值存在差异:
8727099392 / 538976 / 1301e-9 = 12.4458G/s # 不等于报告的11.5877G/s
4363549696 / 538976 / 1301e-9 = 6.2229G/s # 接近但不等于6.22113G/s
问题根源
经过核心开发者的提示,发现问题出在单位显示上:
- bytes_per_second显示的是Gibibytes/s(GiB/s,基于1024的幂)
 - items_per_second显示的是Gigaitems/s(G/s,基于1000的幂)
 
验证计算:
(4.58916 * 1024^3)/2 / 1000^3 = 2.46379
这与报告的items_per_second值完全匹配。
解决方案
这个问题实际上已经在Google Benchmark的后续版本中通过改进单位显示方式得到解决。建议用户:
- 升级到最新版本的Google Benchmark库
 - 注意区分二进制单位(GiB/s)和十进制单位(G/s)的差异
 - 在比较不同单位指标时进行适当的转换
 
性能测试最佳实践
在编写性能测试时,建议:
- 明确理解所用指标的单位体系
 - 对于涉及数据传输的测试,同时记录bytes和items指标
 - 在文档中注明使用的单位标准
 - 考虑添加注释说明预期的比例关系
 - 对于关键性能指标,可以添加验证计算确保结果符合预期
 
通过这次问题分析,我们不仅解决了具体的指标显示问题,更重要的是加深了对性能测试指标的理解,为今后的测试工作提供了宝贵的经验。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
239
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
98
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
445