GridStack.js v11.4.0 版本发布:拖拽优化与框架适配升级
GridStack.js 是一个流行的开源网格布局库,它允许开发者创建可拖拽、可调整大小的响应式网格布局。该库广泛应用于仪表盘、内容管理系统等需要灵活布局的场景。最新发布的 v11.4.0 版本带来了一系列重要的改进和修复,特别是在拖拽功能优化和前端框架适配方面有了显著提升。
核心改进与修复
1. 现代化鼠标事件处理
本次更新中,团队移除了过时的 initMouseEvent 方法,转而采用标准的 MouseEvent 构造函数,并添加了 composed: true 参数。这一改进不仅使代码更加现代化,还提升了事件在隔离DOM中的兼容性,为复杂前端架构提供了更好的支持。
2. 自定义拖拽手柄与懒加载兼容性修复
解决了自定义拖拽手柄与懒加载功能冲突的问题。在之前的版本中,当同时使用自定义拖拽手柄和懒加载时,拖拽功能可能会失效。这一修复使得开发者可以更灵活地控制拖拽行为,同时保持性能优化。
3. Angular 循环依赖问题解决
针对 Angular 框架用户,修复了可能出现的循环依赖问题。这一改进使得 GridStack 在 Angular 应用中运行更加稳定,减少了潜在的性能问题和构建错误。
4. 隔离DOM拖拽优化
解决了在隔离DOM环境中拖拽元素时可能出现的重复附加问题。这一修复确保了在 Web Components 或使用隔离DOM的现代前端架构中,拖拽行为能够正确执行,元素能够被准确地重新定位。
5. 最小宽度限制修复
修正了当设置的最小宽度(minW)大于列数时可能导致的问题。现在,当开发者设置的 minW 值超过网格总列数时,系统会进行合理处理,避免布局错误或异常行为。
新增功能
公开 prepareDragDrop 方法
新增了一个重要的公共 API:prepareDragDrop(el)。这个功能原本是内部使用的 _prepareDragDropByNode(n) 方法,现在公开后,使得 Angular、React 等框架可以更灵活地控制拖拽初始化时机。
这一改进特别有用,因为在某些框架中,网格项的内容元素是在外部网格项 div 创建之后才添加的。现在开发者可以明确地在内容加载完成后调用此方法,确保拖拽功能正确初始化。
潜在的重大变更
虽然影响范围可能不大,但需要注意的一个变化是:Util.createWidgetDivs() 方法已移至 grid.createWidgetDivs()。这一调整主要是为了解决循环依赖问题,开发者如果直接使用了这个工具方法,需要相应更新代码。
技术价值与影响
v11.4.0 版本的这些改进,从多个维度提升了 GridStack.js 的稳定性和可用性:
-
现代化代码基础:通过采用标准事件构造函数,项目保持了与现代浏览器特性的兼容性,为未来的功能扩展奠定了基础。
-
框架友好性增强:特别是对 Angular 和 React 等现代前端框架的适配改进,使得 GridStack 能够更好地融入现代前端开发工作流。
-
复杂场景支持:隔离DOM和懒加载等功能的优化,使得 GridStack 能够在更复杂的应用场景中稳定工作,满足企业级应用的需求。
-
API 设计合理化:将内部方法公开为正式 API,反映了项目对开发者实际需求的响应,提供了更灵活的集成方式。
对于正在使用或考虑采用 GridStack.js 的开发者来说,v11.4.0 版本是一个值得升级的稳定版本,特别是在需要与现代前端框架深度集成或使用高级拖拽功能的场景下。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00