Kili Python SDK 使用教程
2025-04-17 10:39:38作者:沈韬淼Beryl
1. 项目介绍
Kili Python SDK 是 Kili 平台的 Python 客户端。Kili 平台致力于通过高质量训练数据创建,推动机器学习的数据中心方法。它提供了协作数据标注工具和 API,使得可靠数据集构建与模型训练之间的迭代快速进行。Kili Python SDK 允许用户查询和操作 Kili 平台中的主要实体,如项目、资产、标签、API 密钥等。
2. 项目快速启动
在开始之前,确保你的环境中安装了 Python(版本至少为 3.8)。
安装 Kili Python SDK
通过 pip 命令安装 Kili Python SDK:
pip install kili
配置 API 密钥
首先,你需要在 Kili 平台上创建一个 API 密钥,并将其配置到你的环境中:
export KILI_API_KEY='你的 KILI_API_KEY'
初始化 Kili 客户端
在你的 Python 脚本中,初始化 Kili 客户端:
from kili.client import Kili
kili = Kili(api_key='你的 KILI_API_KEY')
或者,你可以在创建 Kili 实例时直接传递 API 密钥:
kili = Kili()
3. 应用案例和最佳实践
以下是使用 Kili Python SDK 的一些常见应用案例。
创建标注项目
创建一个标注项目,首先需要定义项目的 JSON 接口:
json_interface = {
"jobs": {
"CLASSIFICATION_JOB": {
"mlTask": "CLASSIFICATION",
"content": {
"categories": {
"RED": {"name": "Red"},
"BLACK": {"name": "Black"},
"WHITE": {"name": "White"},
"GREY": {"name": "Grey"}
},
"input": "radio"
},
"instruction": "Color"
}
}
}
project_id = kili.create_project(
title="Color classification",
description="Project ...",
input_type="IMAGE",
json_interface=json_interface
)["id"]
导入数据以进行标注
接下来,将数据导入项目中以便标注:
assets = [
{"externalId": "example 1", "content": "https://images.caradisiac.com/logos/3/8/6/7/253867/S0-tesla-enregistre-d-importantes-pertes-au-premier-trimestre-175948.jpg"},
{"externalId": "example 2", "content": "https://img.sportauto.fr/news/2018/11/28/1533574/1920%7C1280%7Cc096243e5460db3e5e70c773.jpg"},
{"externalId": "example 3", "content": "./recipes/img/man_on_a_bike.jpeg"},
]
external_id_array = [a["externalId"] for a in assets]
content_array = [a["content"] for a in assets]
kili.append_many_to_dataset(
project_id=project_id,
content_array=content_array,
external_id_array=external_id_array,
)
导出标注结果
标注完成后,可以导出标注结果:
kili.export_labels("your_project_id", "export.zip", "yolo_v4")
4. 典型生态项目
在 Kili Python SDK 的生态中,你可以找到各种项目和工具,例如用于图像标注、文本标注、视频分类等的项目。这些项目通常遵循上述的最佳实践,并且可以与 Kili 平台无缝集成,以提供更加丰富和灵活的数据标注解决方案。通过参考这些项目,你可以快速搭建自己的数据标注流水线,从而加速机器学习模型的开发和训练过程。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355