GLiNER模型复现与性能优化实践
2025-07-05 20:03:58作者:胡唯隽
引言
GLiNER作为一种通用命名实体识别模型,在零样本学习场景下表现出色。本文记录了基于DeBERTa-v3-large架构的GLiNER模型复现过程,包括训练配置优化、性能调优策略以及最终达到接近论文报告水平的实践经验。
模型训练配置
初始训练采用了以下关键配置参数:
- 基础模型:DeBERTa-v3-large
- 最大跨度宽度:12
- 隐藏层大小:768
- 学习率:编码器1e-5,其他部分5e-5
- 训练步数:30000步
- 批量大小:8
- 损失函数参数:alpha=0.75,gamma=0
- 最大序列长度:512
初始训练结果分析
首次完整训练后,模型在验证集上的平均F1得分为54.4%,与论文报告的60.9%存在明显差距。具体表现如下:
- CrossNER_AI:47.9%
- CrossNER_literature:55.3%
- CrossNER_music:66.7%
- CrossNER_policy:68.6%
- CrossNER_science:54.6%
- mit-movie:50.7%
- mit-restaurant:37.1%
优化策略与调整
通过分析训练过程,发现以下关键优化点:
-
训练步数控制:模型在5000步时达到最佳性能(平均58.0%),后续训练反而导致性能下降,表明可能存在过拟合现象。
-
超参数调整:参考官方推荐的配置后,性能提升至54.9%,最佳迭代(5000步)达到58.0%。
-
早停机制:通过监控验证集性能,确定4000-5000步为最佳停止点。
最终复现成果
经过多次实验调整,最终获得的模型性能如下:
模型版本 | AI | 文学 | 音乐 | 政策 | 科学 | 电影 | 餐厅 | 平均 |
---|---|---|---|---|---|---|---|---|
iter_4000 | 56.7 | 65.1 | 69.6 | 74.2 | 60.9 | 60.6 | 39.7 | 61.0 |
论文报告 | 57.2 | 64.4 | 69.6 | 72.6 | 62.6 | 57.2 | 42.9 | 60.9 |
关键发现:
- 模型在4000步时达到最佳性能(61.0%),超过论文报告水平
- 政策领域表现尤为突出(74.2% vs 72.6%)
- 餐厅领域表现略低于论文结果(39.7% vs 42.9%)
经验总结
-
训练时长控制:GLiNER模型不需要过多训练步数,4000-5000步即可达到最佳性能。
-
性能监控:建议每1000步评估一次验证集性能,及时发现最佳模型。
-
领域差异:不同领域实体识别难度不同,政策和音乐领域表现最佳,餐厅领域最具挑战性。
-
模型稳定性:训练后期可能出现性能下降,需要合理设置早停机制。
本实践表明,通过合理的训练策略和参数配置,完全可以复现甚至略微超越原始论文报告的性能水平。这为后续GLiNER模型的应用和优化提供了可靠的基础。
登录后查看全文
热门项目推荐
Hunyuan3D-Part
腾讯混元3D-Part00Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0274community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息011Hunyuan3D-2
Hunyuan3D 2.0:高分辨率三维生成系统,支持精准形状建模与生动纹理合成,简化资产再创作流程。Python00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
153
1.98 K

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
505
42

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
194
279

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
992
395

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
938
554

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
333
11

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
70