Artillery性能测试中实现CSV数据唯一性消费的解决方案
2025-05-27 18:46:02作者:卓炯娓
背景介绍
在性能测试工具Artillery的实际应用中,测试人员经常需要从CSV文件中读取测试数据。然而在某些特殊场景下,CSV中的每条数据只能被使用一次,如果重复使用会导致系统拒绝请求,从而使性能测试失败。这种需求在测试需要唯一标识或一次性令牌的场景中尤为常见。
传统CSV数据加载方式
Artillery原生支持通过YAML配置从CSV文件加载测试数据,典型配置如下:
payload:
- path: ./data/test_data.csv
order: random
fields:
- "url"
- "type"
这种方式虽然简单易用,但存在以下局限性:
- 无法保证数据被唯一消费
- 在多VU(虚拟用户)场景下可能出现数据竞争
- 不支持数据消费状态的持久化
解决方案:Redis集成
针对这一技术挑战,Artillery社区提出了基于Redis的解决方案。Redis作为高性能的内存数据库,非常适合这种需要原子性操作和状态维护的场景。
实现原理
- 数据预加载:测试前将CSV数据批量导入Redis
- 原子性消费:每个VU通过原子操作从Redis获取唯一数据
- 状态管理:Redis自动维护数据消费状态
具体实现
-
Redis数据结构设计:
- 使用List或Set存储原始数据
- 使用原子操作如LPOP/RPOP实现安全消费
-
Artillery处理器示例:
const redis = require('redis');
const client = redis.createClient();
async function getUniqueData() {
return new Promise((resolve, reject) => {
client.lpop('test_data', (err, data) => {
if (err) reject(err);
resolve(JSON.parse(data));
});
});
}
- 测试场景配置:
config:
processor: "./redis_processor.js"
scenarios:
- beforeScenario: "getUniqueData"
flows:
- log: "Processing {{url}}"
Playwright引擎的特殊处理
当结合Artillery的Playwright引擎使用时,需要注意:
- beforeScenario限制:当前Playwright引擎不支持直接使用beforeScenario钩子
- 替代方案:将数据获取逻辑直接内嵌到测试函数中
async function playwrightTest(page) {
const testData = await getUniqueDataFromRedis();
await page.goto(testData.url);
// 后续测试逻辑
}
最佳实践建议
- 数据预热:测试前确保Redis中已加载足够数据
- 错误处理:实现完善的数据耗尽处理机制
- 性能考量:Redis连接池优化以减少网络开销
- 环境隔离:不同测试环境使用不同的Redis数据库
未来展望
Artillery团队正在考虑原生支持唯一性数据消费功能,可能的实现方向包括:
- 内置分布式锁机制
- 支持更多数据库后端
- 提供数据消费状态监控
通过这种技术方案,测试工程师可以构建更加健壮的性能测试场景,确保测试数据的唯一性消费,从而获得准确的性能测试结果。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
MiniCPM-SALAMiniCPM-SALA 正式发布!这是首个有效融合稀疏注意力与线性注意力的大规模混合模型,专为百万级token上下文建模设计。00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
541
3.77 K
Ascend Extension for PyTorch
Python
353
420
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
616
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
339
186
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
194
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
142
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
759