Artillery性能测试中实现CSV数据唯一性消费的解决方案
2025-05-27 18:46:02作者:卓炯娓
背景介绍
在性能测试工具Artillery的实际应用中,测试人员经常需要从CSV文件中读取测试数据。然而在某些特殊场景下,CSV中的每条数据只能被使用一次,如果重复使用会导致系统拒绝请求,从而使性能测试失败。这种需求在测试需要唯一标识或一次性令牌的场景中尤为常见。
传统CSV数据加载方式
Artillery原生支持通过YAML配置从CSV文件加载测试数据,典型配置如下:
payload:
- path: ./data/test_data.csv
order: random
fields:
- "url"
- "type"
这种方式虽然简单易用,但存在以下局限性:
- 无法保证数据被唯一消费
- 在多VU(虚拟用户)场景下可能出现数据竞争
- 不支持数据消费状态的持久化
解决方案:Redis集成
针对这一技术挑战,Artillery社区提出了基于Redis的解决方案。Redis作为高性能的内存数据库,非常适合这种需要原子性操作和状态维护的场景。
实现原理
- 数据预加载:测试前将CSV数据批量导入Redis
- 原子性消费:每个VU通过原子操作从Redis获取唯一数据
- 状态管理:Redis自动维护数据消费状态
具体实现
-
Redis数据结构设计:
- 使用List或Set存储原始数据
- 使用原子操作如LPOP/RPOP实现安全消费
-
Artillery处理器示例:
const redis = require('redis');
const client = redis.createClient();
async function getUniqueData() {
return new Promise((resolve, reject) => {
client.lpop('test_data', (err, data) => {
if (err) reject(err);
resolve(JSON.parse(data));
});
});
}
- 测试场景配置:
config:
processor: "./redis_processor.js"
scenarios:
- beforeScenario: "getUniqueData"
flows:
- log: "Processing {{url}}"
Playwright引擎的特殊处理
当结合Artillery的Playwright引擎使用时,需要注意:
- beforeScenario限制:当前Playwright引擎不支持直接使用beforeScenario钩子
- 替代方案:将数据获取逻辑直接内嵌到测试函数中
async function playwrightTest(page) {
const testData = await getUniqueDataFromRedis();
await page.goto(testData.url);
// 后续测试逻辑
}
最佳实践建议
- 数据预热:测试前确保Redis中已加载足够数据
- 错误处理:实现完善的数据耗尽处理机制
- 性能考量:Redis连接池优化以减少网络开销
- 环境隔离:不同测试环境使用不同的Redis数据库
未来展望
Artillery团队正在考虑原生支持唯一性数据消费功能,可能的实现方向包括:
- 内置分布式锁机制
- 支持更多数据库后端
- 提供数据消费状态监控
通过这种技术方案,测试工程师可以构建更加健壮的性能测试场景,确保测试数据的唯一性消费,从而获得准确的性能测试结果。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C078
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
463
3.45 K
Ascend Extension for PyTorch
Python
270
310
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
187
77
暂无简介
Dart
714
171
React Native鸿蒙化仓库
JavaScript
284
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
844
424
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
120
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692