OpenBLAS在LoongArch64和AMD64架构下使用GCC14的编译问题分析
问题概述
近期在Loongson-3A6000(LoongArch64架构)和AMD Zen4 7940HS(x86_64架构)平台上使用GCC14编译OpenBLAS时发现了两个关键问题。这些问题主要出现在特定编译环境下,值得开发者关注。
问题一:INTERFACE64模式下的测试失败
现象描述
当使用GCC14配合CMake构建系统,并启用INTERFACE64=1选项时,在两种架构上都出现了大量测试用例失败的情况。测试失败表现为段错误(Segmentation Fault)或总线错误(Bus error)。
环境细节
-
LoongArch64平台:
- 操作系统:Loong Arch Linux
- 处理器:Loongson-3A6000
- 内核版本:6.8.6-2或6.9.7-loongarch
- GCC版本:14.1.0(源码编译)
-
AMD64平台:
- 操作系统:Debian GNU/Linux 12
- 处理器:AMD Zen4 R9 7940HS
- 内核版本:6.1.0-22-amd64
- GCC版本:14.1.0(源码编译)
关键发现
- 使用GCC13及以下版本编译时,问题不会出现
- 不启用INTERFACE64=1选项时,编译和测试均正常
- 使用系统自带的GCC14(非源码编译版本)时,问题不会出现
技术分析
这个问题可能与GCC14的某些优化特性有关,特别是在处理64位接口时。由于使用系统自带的GCC14不会出现此问题,推测可能是特定编译配置导致的编译器行为差异。
问题二:LoongArch64特有的测试失败
现象描述
在LoongArch64平台上,无论是否启用INTERFACE64=1,使用GCC14编译后都会出现一个特定的测试失败:
TEST 99/103 potrf:smoketest_trivial [FAIL]
ERR: test_potrs.c:535 L s(0,0) difference: 1.19209e-07
测试期望的误差界限是1e-5,但实际误差1.19209e-07远小于此值却仍然报告失败。
解决方案
通过添加编译器优化指令可以解决此问题:
#pragma GCC optimize("no-gcse")
将此指令添加到test_potrs.c文件开头即可修复测试失败问题。
根本原因
这是GCC14.1版本中的一个编译器bug,特别是在LoongArch64平台上表现明显。该bug导致编译器在公共子表达式消除(GCSE)优化时产生了不正确的代码。值得注意的是,在GCC15的开发版本中这个问题已经被修复。
最佳实践建议
-
编译器选择:
- 对于生产环境,建议使用系统提供的稳定版GCC
- 如需使用最新GCC版本,建议从官方git仓库获取最新代码编译
-
问题规避:
- 对于LoongArch64平台上的测试失败,可以应用上述的优化指令解决方案
- 或者考虑暂时使用GCC13等稳定版本
-
测试策略:
- 在重要项目中,建议在多种编译器版本上进行全面测试
- 特别注意INTERFACE64模式下的测试覆盖率
总结
OpenBLAS在LoongArch64和AMD64架构上使用GCC14时出现的问题,主要源于编译器本身的特定版本bug。开发者应当注意编译器版本的选择,并在遇到类似问题时考虑编译器优化的影响。对于LoongArch64平台上的特定问题,目前已有明确的解决方案。随着GCC的持续更新,这些问题有望在未来的版本中得到彻底解决。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









