Steam Economy Enhancer项目中的重复物品销售问题解析
问题背景
在Steam Economy Enhancer这个浏览器扩展项目中,用户报告了一个关于重复物品销售的bug。当用户尝试通过扩展的绿色销售按钮快速销售多个相同物品时,系统会提示"已有相同物品的待确认列表",阻止了后续相同物品的销售。
问题现象
具体表现为:
- 用户成功列出了第一件物品(如Hatchet),价格为6.26卢布
- 当尝试列出第二件相同物品时,系统提示"已有相同物品的待确认列表,请先确认或取消现有列表"
- 该问题在Chrome浏览器最新版本中可复现
技术分析
经过项目贡献者的深入调查,发现问题的根源在于Steam最近对库存系统所做的改动。具体技术细节如下:
-
assetid赋值错误:Steam系统错误地将所有相同物品的assetid都设置为第一个物品的assetid值,导致系统无法区分相同类型的不同物品实例。
-
DOM元素ID保留真实信息:虽然Steam API返回的assetid信息有误,但在DOM元素的ID属性中仍然保留了每个物品的真实assetid信息,格式为"appid_contextid_assetid"。
-
扩展功能依赖关系:Steam Economy Enhancer扩展的部分功能依赖于正确的assetid来识别和操作特定物品,当这个值被错误统一后,扩展就无法正确处理重复物品的销售操作。
解决方案
项目贡献者提出了两种解决方案:
-
临时修复方案:在销售功能中修正assetid的值,从DOM元素的ID中提取真实的assetid信息。这种方法可以解决销售功能的问题,但不会解决其他可能受影响的扩展功能。
-
完整修复方案:在获取库存物品列表的函数(getInventoryItems)中统一修正所有物品的assetid值。这种方法更为彻底,可以解决所有可能受影响的扩展功能,包括但不限于销售功能。
核心修复代码如下:
for (let item of arr) {
item.assetid = item.element.id.replace(`${item.appid}_${item.contextid}_`, "")
}
技术启示
这个问题给我们几个重要的技术启示:
-
第三方API的不可靠性:即使是像Steam这样的大型平台,其API也可能存在bug或意外变更,开发者需要做好错误处理和兼容性设计。
-
数据源的多样性:当主要数据源(API)出现问题时,可以考虑从其他数据源(DOM元素)获取所需信息。
-
扩展开发的防御性编程:浏览器扩展作为第三方代码,应该对宿主环境的变化保持警惕,实现足够的容错机制。
总结
Steam Economy Enhancer项目中的这个重复物品销售问题,展示了现代Web开发中常见的API与DOM数据不一致的挑战。通过深入分析问题根源并利用DOM中保留的真实数据,开发者能够提供有效的解决方案。这个案例也提醒我们,在开发浏览器扩展时,需要同时考虑API和DOM两个数据源,并准备好应对平台方可能做出的任何变更。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00