Reactor Core中TimedScheduler的内存泄漏问题分析与修复
问题背景
在Reactor Core项目的Micrometer集成模块中,TimedScheduler是一个用于包装原生Scheduler并提供度量指标功能的装饰器类。它通过Micrometer库来收集和暴露调度器的各种运行时指标,如待处理任务数、活跃任务数等。
问题现象
开发团队发现,当使用TimedScheduler时,在某些特定场景下会出现内存泄漏问题。具体表现为:当一个被调度的任务在被执行前被取消(dispose)时,该任务对应的待处理任务指标样本(pending sample)不会被正确清理,导致这些样本对象在内存中不断累积。
问题分析
这个问题主要出现在以下典型场景中:
- 使用timeout操作符时,会提交一个延迟任务来表示超时
- 如果响应式链在超时触发前完成,这个延迟任务会被取消
- 在现有实现中,任务取消时没有同步清理对应的待处理指标样本
这种场景在实际应用中非常常见,特别是频繁使用timeout操作符的情况下,内存泄漏问题会迅速显现。
技术细节
TimedScheduler内部使用LongTaskTimer来跟踪待处理任务。当任务被调度时,会创建一个Sample对象来记录任务进入待处理状态的时间。理想情况下,这个Sample应该在以下两种情况下被停止:
- 任务被执行时
- 任务被取消时
但原实现只处理了第一种情况,忽略了任务被取消的场景。
解决方案
经过讨论和验证,最终采用了以下解决方案:
- 将TimedRunnable同时实现Disposable接口
- 在任务类内部维护对实际Disposable的引用
- 重写dispose方法,在取消任务时同时停止对应的指标样本
- 重构调度逻辑,将重复的计数器操作集中到TimedRunnable中
这种设计既解决了内存泄漏问题,又避免了创建额外的包装对象,保持了良好的性能特性。
修复效果
修复后,系统能够正确跟踪所有场景下的任务生命周期:
- 任务正常执行:指标样本在执行时停止
- 任务被拒绝:指标样本在拒绝时停止
- 任务被取消:指标样本在取消时停止
这彻底解决了因任务取消导致的指标样本泄漏问题,保证了系统的稳定性和指标数据的准确性。
总结
这次修复展示了在构建监控系统时需要考虑的完整生命周期管理。特别是在异步、响应式编程模型中,任务的取消和拒绝是常见场景,监控系统必须妥善处理这些边界条件,才能提供准确可靠的指标数据,同时避免资源泄漏问题。
对于使用Reactor Core的开发者来说,这次修复意味着在使用timeout等操作符时,可以放心地依赖TimedScheduler提供的指标,而不必担心内存泄漏的风险。这也为其他类似的监控集成实现提供了良好的参考范例。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00