Reactor Core中TimedScheduler的内存泄漏问题分析与修复
问题背景
在Reactor Core项目的Micrometer集成模块中,TimedScheduler是一个用于包装原生Scheduler并提供度量指标功能的装饰器类。它通过Micrometer库来收集和暴露调度器的各种运行时指标,如待处理任务数、活跃任务数等。
问题现象
开发团队发现,当使用TimedScheduler时,在某些特定场景下会出现内存泄漏问题。具体表现为:当一个被调度的任务在被执行前被取消(dispose)时,该任务对应的待处理任务指标样本(pending sample)不会被正确清理,导致这些样本对象在内存中不断累积。
问题分析
这个问题主要出现在以下典型场景中:
- 使用timeout操作符时,会提交一个延迟任务来表示超时
- 如果响应式链在超时触发前完成,这个延迟任务会被取消
- 在现有实现中,任务取消时没有同步清理对应的待处理指标样本
这种场景在实际应用中非常常见,特别是频繁使用timeout操作符的情况下,内存泄漏问题会迅速显现。
技术细节
TimedScheduler内部使用LongTaskTimer来跟踪待处理任务。当任务被调度时,会创建一个Sample对象来记录任务进入待处理状态的时间。理想情况下,这个Sample应该在以下两种情况下被停止:
- 任务被执行时
- 任务被取消时
但原实现只处理了第一种情况,忽略了任务被取消的场景。
解决方案
经过讨论和验证,最终采用了以下解决方案:
- 将TimedRunnable同时实现Disposable接口
- 在任务类内部维护对实际Disposable的引用
- 重写dispose方法,在取消任务时同时停止对应的指标样本
- 重构调度逻辑,将重复的计数器操作集中到TimedRunnable中
这种设计既解决了内存泄漏问题,又避免了创建额外的包装对象,保持了良好的性能特性。
修复效果
修复后,系统能够正确跟踪所有场景下的任务生命周期:
- 任务正常执行:指标样本在执行时停止
- 任务被拒绝:指标样本在拒绝时停止
- 任务被取消:指标样本在取消时停止
这彻底解决了因任务取消导致的指标样本泄漏问题,保证了系统的稳定性和指标数据的准确性。
总结
这次修复展示了在构建监控系统时需要考虑的完整生命周期管理。特别是在异步、响应式编程模型中,任务的取消和拒绝是常见场景,监控系统必须妥善处理这些边界条件,才能提供准确可靠的指标数据,同时避免资源泄漏问题。
对于使用Reactor Core的开发者来说,这次修复意味着在使用timeout等操作符时,可以放心地依赖TimedScheduler提供的指标,而不必担心内存泄漏的风险。这也为其他类似的监控集成实现提供了良好的参考范例。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
MiniCPM-SALAMiniCPM-SALA 正式发布!这是首个有效融合稀疏注意力与线性注意力的大规模混合模型,专为百万级token上下文建模设计。00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01