在Darts项目中记录训练和验证损失值的方法
2025-05-27 08:27:15作者:戚魁泉Nursing
概述
在机器学习模型训练过程中,监控训练和验证损失值的变化对于理解模型性能至关重要。本文将介绍如何在Darts项目中有效地记录和访问这些关键指标。
使用PyTorch Lightning回调机制
Darts基于PyTorch Lightning构建,因此我们可以利用其强大的回调系统来记录损失值。回调是在训练过程中特定时间点执行的函数,非常适合用于监控目的。
自定义损失记录回调
创建一个继承自Callback的自定义回调类是最直接的方法:
import pytorch_lightning as pl
class StepLossLogger(pl.Callback):
"""用于在训练过程中记录每一步/批次的训练和验证损失"""
def __init__(self):
self.train_step = [] # 记录训练步数
self.train_loss = [] # 记录训练损失
self.val_step = [] # 记录验证步数
self.val_loss = [] # 记录验证损失
def on_train_batch_end(self, trainer, *args, **kwargs):
"""在每个训练批次结束时记录训练损失"""
self.train_step.append(int(trainer.global_step))
self.train_loss.append(float(trainer.callback_metrics["train_loss"]))
def on_validation_end(self, trainer, *args, **kwargs):
"""在每次验证结束时记录验证损失"""
self.val_step.append(int(trainer.global_step))
self.val_loss.append(float(trainer.callback_metrics["val_loss"]))
集成到Darts模型训练中
将自定义回调集成到Darts模型训练流程中有两种主要方式:
方法一:通过pl_trainer_kwargs参数
loss_logger = StepLossLogger()
model = TiDEModel(
# 模型参数...
pl_trainer_kwargs={"callbacks": [loss_logger]}
)
model.fit(...)
方法二:直接创建Trainer实例
loss_logger = StepLossLogger()
callbacks = [early_stopping, loss_logger] # 可以与其他回调组合使用
trainer = pl.Trainer(
devices=[0], # 指定GPU设备
callbacks=callbacks,
max_epochs=100,
)
model.fit_from_dataset(
train_dataset=train_data,
val_dataset=val_data,
trainer=trainer,
verbose=True,
)
访问记录的损失数据
训练完成后,可以通过回调实例直接访问记录的损失数据:
# 获取训练损失
train_losses = loss_logger.train_loss
# 获取验证损失
val_losses = loss_logger.val_loss
# 获取对应的步数
train_steps = loss_logger.train_step
val_steps = loss_logger.val_step
实际应用建议
-
可视化损失曲线:使用Matplotlib或Seaborn绘制训练和验证损失曲线,直观观察模型收敛情况。
-
异常检测:监控损失值的异常波动,可能指示学习率设置不当或数据问题。
-
模型选择:基于验证损失选择最佳模型,避免过拟合。
-
训练过程分析:通过损失变化分析模型训练动态,如是否收敛、是否出现震荡等。
扩展功能
可以进一步扩展回调功能,例如:
- 添加学习率记录
- 实现自定义的早停策略
- 记录模型权重分布
- 实现训练过程的可视化
总结
通过PyTorch Lightning的回调机制,我们可以方便地在Darts项目中记录和分析训练过程中的各种指标。这种方法不仅适用于损失值记录,还可以扩展到其他训练指标的监控,为模型开发和调优提供有力支持。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0136
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
472
3.49 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
719
173
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
86
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1