在Darts项目中记录训练和验证损失值的方法
2025-05-27 10:41:06作者:戚魁泉Nursing
概述
在机器学习模型训练过程中,监控训练和验证损失值的变化对于理解模型性能至关重要。本文将介绍如何在Darts项目中有效地记录和访问这些关键指标。
使用PyTorch Lightning回调机制
Darts基于PyTorch Lightning构建,因此我们可以利用其强大的回调系统来记录损失值。回调是在训练过程中特定时间点执行的函数,非常适合用于监控目的。
自定义损失记录回调
创建一个继承自Callback的自定义回调类是最直接的方法:
import pytorch_lightning as pl
class StepLossLogger(pl.Callback):
"""用于在训练过程中记录每一步/批次的训练和验证损失"""
def __init__(self):
self.train_step = [] # 记录训练步数
self.train_loss = [] # 记录训练损失
self.val_step = [] # 记录验证步数
self.val_loss = [] # 记录验证损失
def on_train_batch_end(self, trainer, *args, **kwargs):
"""在每个训练批次结束时记录训练损失"""
self.train_step.append(int(trainer.global_step))
self.train_loss.append(float(trainer.callback_metrics["train_loss"]))
def on_validation_end(self, trainer, *args, **kwargs):
"""在每次验证结束时记录验证损失"""
self.val_step.append(int(trainer.global_step))
self.val_loss.append(float(trainer.callback_metrics["val_loss"]))
集成到Darts模型训练中
将自定义回调集成到Darts模型训练流程中有两种主要方式:
方法一:通过pl_trainer_kwargs参数
loss_logger = StepLossLogger()
model = TiDEModel(
# 模型参数...
pl_trainer_kwargs={"callbacks": [loss_logger]}
)
model.fit(...)
方法二:直接创建Trainer实例
loss_logger = StepLossLogger()
callbacks = [early_stopping, loss_logger] # 可以与其他回调组合使用
trainer = pl.Trainer(
devices=[0], # 指定GPU设备
callbacks=callbacks,
max_epochs=100,
)
model.fit_from_dataset(
train_dataset=train_data,
val_dataset=val_data,
trainer=trainer,
verbose=True,
)
访问记录的损失数据
训练完成后,可以通过回调实例直接访问记录的损失数据:
# 获取训练损失
train_losses = loss_logger.train_loss
# 获取验证损失
val_losses = loss_logger.val_loss
# 获取对应的步数
train_steps = loss_logger.train_step
val_steps = loss_logger.val_step
实际应用建议
-
可视化损失曲线:使用Matplotlib或Seaborn绘制训练和验证损失曲线,直观观察模型收敛情况。
-
异常检测:监控损失值的异常波动,可能指示学习率设置不当或数据问题。
-
模型选择:基于验证损失选择最佳模型,避免过拟合。
-
训练过程分析:通过损失变化分析模型训练动态,如是否收敛、是否出现震荡等。
扩展功能
可以进一步扩展回调功能,例如:
- 添加学习率记录
- 实现自定义的早停策略
- 记录模型权重分布
- 实现训练过程的可视化
总结
通过PyTorch Lightning的回调机制,我们可以方便地在Darts项目中记录和分析训练过程中的各种指标。这种方法不仅适用于损失值记录,还可以扩展到其他训练指标的监控,为模型开发和调优提供有力支持。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134