在Darts项目中记录训练和验证损失值的方法
2025-05-27 03:29:39作者:戚魁泉Nursing
概述
在机器学习模型训练过程中,监控训练和验证损失值的变化对于理解模型性能至关重要。本文将介绍如何在Darts项目中有效地记录和访问这些关键指标。
使用PyTorch Lightning回调机制
Darts基于PyTorch Lightning构建,因此我们可以利用其强大的回调系统来记录损失值。回调是在训练过程中特定时间点执行的函数,非常适合用于监控目的。
自定义损失记录回调
创建一个继承自Callback
的自定义回调类是最直接的方法:
import pytorch_lightning as pl
class StepLossLogger(pl.Callback):
"""用于在训练过程中记录每一步/批次的训练和验证损失"""
def __init__(self):
self.train_step = [] # 记录训练步数
self.train_loss = [] # 记录训练损失
self.val_step = [] # 记录验证步数
self.val_loss = [] # 记录验证损失
def on_train_batch_end(self, trainer, *args, **kwargs):
"""在每个训练批次结束时记录训练损失"""
self.train_step.append(int(trainer.global_step))
self.train_loss.append(float(trainer.callback_metrics["train_loss"]))
def on_validation_end(self, trainer, *args, **kwargs):
"""在每次验证结束时记录验证损失"""
self.val_step.append(int(trainer.global_step))
self.val_loss.append(float(trainer.callback_metrics["val_loss"]))
集成到Darts模型训练中
将自定义回调集成到Darts模型训练流程中有两种主要方式:
方法一:通过pl_trainer_kwargs参数
loss_logger = StepLossLogger()
model = TiDEModel(
# 模型参数...
pl_trainer_kwargs={"callbacks": [loss_logger]}
)
model.fit(...)
方法二:直接创建Trainer实例
loss_logger = StepLossLogger()
callbacks = [early_stopping, loss_logger] # 可以与其他回调组合使用
trainer = pl.Trainer(
devices=[0], # 指定GPU设备
callbacks=callbacks,
max_epochs=100,
)
model.fit_from_dataset(
train_dataset=train_data,
val_dataset=val_data,
trainer=trainer,
verbose=True,
)
访问记录的损失数据
训练完成后,可以通过回调实例直接访问记录的损失数据:
# 获取训练损失
train_losses = loss_logger.train_loss
# 获取验证损失
val_losses = loss_logger.val_loss
# 获取对应的步数
train_steps = loss_logger.train_step
val_steps = loss_logger.val_step
实际应用建议
-
可视化损失曲线:使用Matplotlib或Seaborn绘制训练和验证损失曲线,直观观察模型收敛情况。
-
异常检测:监控损失值的异常波动,可能指示学习率设置不当或数据问题。
-
模型选择:基于验证损失选择最佳模型,避免过拟合。
-
训练过程分析:通过损失变化分析模型训练动态,如是否收敛、是否出现震荡等。
扩展功能
可以进一步扩展回调功能,例如:
- 添加学习率记录
- 实现自定义的早停策略
- 记录模型权重分布
- 实现训练过程的可视化
总结
通过PyTorch Lightning的回调机制,我们可以方便地在Darts项目中记录和分析训练过程中的各种指标。这种方法不仅适用于损失值记录,还可以扩展到其他训练指标的监控,为模型开发和调优提供有力支持。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析2 freeCodeCamp音乐播放器项目中的函数调用问题解析3 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析4 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析5 freeCodeCamp课程视频测验中的Tab键导航问题解析6 freeCodeCamp课程中屏幕放大器知识点优化分析7 freeCodeCamp Cafe Menu项目中link元素的void特性解析8 freeCodeCamp英语课程填空题提示缺失问题分析9 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133