InteractiveGraph-neo4j 使用教程
1. 项目介绍
InteractiveGraph-neo4j 是一个基于 Neo4j 的开源图数据库可视化工具。它提供了一个交互式的界面,使用户能够轻松地探索和分析图数据。该项目的主要目标是简化图数据的查询和可视化过程,使得非技术人员也能方便地使用图数据库。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保你已经安装了以下软件:
- Java 8 或更高版本
- Neo4j 数据库
- Maven
2.2 下载项目
首先,从 GitHub 下载项目:
git clone https://github.com/grapheco/InteractiveGraph-neo4j.git
2.3 配置项目
进入项目目录并编辑 application.properties 文件,配置 Neo4j 数据库连接信息:
spring.data.neo4j.uri=bolt://localhost:7687
spring.data.neo4j.username=neo4j
spring.data.neo4j.password=your_password
2.4 编译和运行
使用 Maven 编译并运行项目:
cd InteractiveGraph-neo4j
mvn clean install
mvn spring-boot:run
项目启动后,访问 http://localhost:8080 即可进入 InteractiveGraph-neo4j 的交互界面。
3. 应用案例和最佳实践
3.1 社交网络分析
InteractiveGraph-neo4j 可以用于分析社交网络中的用户关系。通过可视化用户之间的连接,可以发现社区结构、关键节点以及潜在的影响者。
3.2 知识图谱构建
在知识图谱的构建过程中,InteractiveGraph-neo4j 可以帮助用户快速查看和编辑实体之间的关系,从而加速知识图谱的构建和维护。
3.3 欺诈检测
在金融领域,InteractiveGraph-neo4j 可以用于欺诈检测。通过分析交易网络中的异常模式,可以识别出潜在的欺诈行为。
4. 典型生态项目
4.1 Neo4j Bloom
Neo4j Bloom 是 Neo4j 官方提供的图数据可视化工具,与 InteractiveGraph-neo4j 类似,但它提供了更多的定制化选项和高级功能。
4.2 Cypher Query Language
Cypher 是 Neo4j 的查询语言,用于从图数据库中检索数据。InteractiveGraph-neo4j 支持 Cypher 查询,用户可以通过编写 Cypher 语句来获取所需的数据。
4.3 Spring Data Neo4j
Spring Data Neo4j 是一个用于简化 Neo4j 数据库访问的 Spring 模块。它与 InteractiveGraph-neo4j 结合使用,可以进一步简化图数据的应用开发。
通过以上步骤,你可以快速上手 InteractiveGraph-neo4j,并利用它进行图数据的可视化和分析。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00