首页
/ Microsoft Olive项目:量化Phi-3.5-mini-instruct模型导出问题解析

Microsoft Olive项目:量化Phi-3.5-mini-instruct模型导出问题解析

2025-07-07 21:10:12作者:江焘钦

在Microsoft Olive项目中,用户尝试对Phi-3.5-mini-instruct模型进行量化并导出时遇到了技术挑战。本文将深入分析问题原因,并提供解决方案。

问题现象

当用户尝试使用Olive工具对Phi-3.5-mini-instruct模型进行AWQ量化并导出ONNX格式时,系统报错显示"AttributeError: 'list' object has no attribute 'get_seq_length'"。值得注意的是,基础模型可以成功导出,但量化后的模型则无法完成导出过程。

技术背景

Phi-3.5-mini-instruct是微软开发的一个高效语言模型,AWQ(Activation-aware Weight Quantization)是一种先进的量化技术,可以在保持模型性能的同时显著减少模型大小。ONNX(Open Neural Network Exchange)是一种开放的模型格式,支持跨平台部署。

错误分析

错误发生在transformers库的modeling_phi3.py文件中,具体表现为量化后的模型在尝试调用get_seq_length方法时失败。这表明量化过程可能改变了模型内部的数据结构,导致后续处理流程无法正确识别。

解决方案

经过技术验证,以下依赖组合可以成功解决问题:

transformers==4.44.2
autoawq==0.2.6
optimum==1.23.1
peft==0.13.2
accelerate>=0.30.0
scipy==1.14.1
onnxruntime-genai==0.5.0
torchvision==0.18.1
tabulate==0.9.0

技术建议

  1. 版本兼容性:在处理量化模型时,各组件版本间的兼容性至关重要。建议严格按照已验证的版本组合进行配置。

  2. 量化注意事项

    • 确保在量化过程中使用正确的数据类型(torch.float16)
    • 注意内存使用情况,特别是处理大型模型时
  3. 导出优化

    • 对于量化模型,建议在GPU环境下进行导出操作
    • 导出前验证模型结构的完整性

总结

Microsoft Olive项目为模型优化和部署提供了强大工具,但在处理特定模型如Phi-3.5-mini-instruct时,需要注意组件版本和量化流程的特殊要求。通过精确控制环境配置,可以成功实现模型的量化和导出,为后续部署奠定基础。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
208
285
pytorchpytorch
Ascend Extension for PyTorch
Python
59
94
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
1.2 K
133