在dotnet/machinelearning项目中处理Tiktoken特殊令牌的正确方法
背景介绍
在使用dotnet/machinelearning项目中的TiktokenTokenizer时,开发者可能会遇到特殊令牌(token)处理不正确的问题。特别是在基于外部规范(如Cohere Command R+)创建自定义词汇表文件时,特殊令牌在单独使用时能被正确识别,但在句子中间出现时却无法被正确分割。
问题本质
这个问题的核心在于TiktokenTokenizer的初始化方式。当开发者从外部规范创建.tiktoken文件时,如果没有正确配置预处理器(PreTokenizer),就会导致特殊令牌在上下文中的识别失败。
解决方案
正确的做法是在创建TiktokenTokenizer实例时显式指定TiktokenPreTokenizer。这个预处理器使用正则表达式模式来定义令牌的分割规则,确保特殊令牌无论在什么上下文中都能被正确识别。
以下是推荐的实现代码:
// 使用Cl100kBase词汇表常用的正则模式
string cl100kBaseRegexPattern = @"'(?i:[sdmt]|re|ve|ll)|(?>[^\r\n\p{L}\p{N}]?)\p{L}+|\p{N}{1,3}| ?(?>[^\s\p{L}\p{N}]+)[\r\n]*|\s*[\r\n]|\s+(?!\S)|\s+";
TiktokenTokenizer tokenizer = TiktokenTokenizer.Create(
outputFilePath,
new TiktokenPreTokenizer(new Regex(cl100kBaseRegexPattern, RegexOptions.Compiled), specialTokens),
normalizer: null,
specialTokens);
技术细节解析
-
正则表达式模式:示例中使用的cl100kBaseRegexPattern是一个经过优化的模式,能够处理多种语言字符、数字和特殊符号的组合。开发者可以根据自己的需求调整这个模式。
-
TiktokenPreTokenizer:这个预处理器负责在正式令牌化之前对输入文本进行初步分割,确保特殊令牌能够被优先识别。
-
特殊令牌处理:通过将特殊令牌列表同时传递给TiktokenPreTokenizer和TiktokenTokenizer,系统能够在不同处理阶段都正确识别这些令牌。
最佳实践建议
-
当从外部规范创建自定义词汇表时,务必检查是否需要自定义预处理器。
-
对于类似Cohere Command R+这样的模型,建议使用模型官方推荐的正则分割模式。
-
在开发过程中,应该使用包含特殊令牌的各种上下文场景进行测试,确保令牌化行为符合预期。
-
对于中文等非拉丁语系文本,可能需要调整正则表达式模式以获得更好的分词效果。
总结
正确处理Tiktoken特殊令牌的关键在于理解令牌化流程的各个阶段,特别是预处理阶段的重要性。通过正确配置TiktokenPreTokenizer,开发者可以确保特殊令牌在各种上下文中都能被准确识别,从而保证后续NLP任务的准确性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0114
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00