Eclipse Che在EKS集群上的授权问题分析与解决方案
问题背景
在Kubernetes环境中部署Eclipse Che时,经常会遇到授权相关的问题。本文将重点分析在Amazon EKS集群上部署Eclipse Che时出现的"Unauthorized"错误,以及如何解决这些问题。
典型错误表现
用户在使用Keycloak作为OIDC身份提供者(IdP)部署Eclipse Che到EKS集群后,会遇到以下两类主要错误:
-
工作空间列表获取失败:控制台显示"Failed to fetch available workspaces, reason: Failed to fetch the list of devWorkspaces. Unable to list devworkspaces: Unauthorized"
-
用户信息获取失败:显示"Failed to fetch the user profile data. Unable to get user profile data: Unauthorized"
-
工作空间创建失败:尝试创建空工作空间时出现"Unable to create devworkspace: Unauthorized"错误
根本原因分析
通过日志分析,可以发现几个关键问题点:
-
Kubernetes API请求认证失败:从日志中可以看到,Eclipse Che Dashboard尝试向Kubernetes API服务器(172.20.0.1:443)发送请求时收到了401 Unauthorized响应。
-
OIDC配置问题:虽然Keycloak作为OIDC提供者已正确配置,但EKS集群未能正确识别来自Keycloak的身份令牌。
-
域名解析问题:关键发现是使用了私有域名,导致EKS集群无法解析Keycloak的主机名,从而无法完成OIDC验证流程。
详细解决方案
1. 检查EKS OIDC配置
确保EKS集群已正确配置为信任Keycloak作为OIDC提供者。这包括:
- 在EKS集群上创建OIDC身份提供者
- 配置正确的Keycloak Realm URL
- 验证客户端ID和密钥匹配
2. 验证Eclipse Che配置
检查CheCluster自定义资源中的关键配置项:
spec:
networking:
auth:
oAuthClientName: kubernetes
oAuthSecret: xxx
identityProviderURL: https://<keycloak-url>/realms/che
domain: che.<che-url>.com
tlsSecretName: che.tls
确保所有URL使用可公开解析的域名,而非内部IP地址或私有域名。
3. 解决域名解析问题
这是最常见的根本原因。必须确保:
- Keycloak的URL是公开可解析的
- EKS集群节点能够解析该域名
- 不使用内部IP地址(如172.20.0.1)作为任何服务的端点
4. 验证RBAC配置
检查Kubernetes RBAC配置,确保:
- Eclipse Che服务账户有足够权限
- OIDC用户被授予了适当角色
- 工作空间命名空间中的权限设置正确
最佳实践建议
-
使用公开域名:始终为所有服务端点配置公开可解析的域名,避免使用内部IP或私有域名。
-
分阶段验证:
- 首先验证Keycloak独立工作
- 然后验证EKS OIDC集成
- 最后验证Eclipse Che集成
-
日志分析:遇到问题时,按顺序检查以下组件日志:
- Eclipse Che Dashboard
- Che Gateway (特别是oauth-proxy和kube-rbac-proxy)
- Keycloak服务器
-
测试认证流程:使用kubectl和原始OIDC令牌手动测试认证流程,隔离问题。
总结
Eclipse Che在EKS上的授权问题通常源于OIDC配置或域名解析问题。通过系统性地验证每个集成点,并确保使用公开可解析的域名,可以解决大多数"Unauthorized"错误。记住,Kubernetes生态系统对域名解析有严格要求,特别是在涉及OIDC等安全组件时,必须确保所有相关服务都能正确解析彼此的主机名。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0120AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









