Apache Fury 新增字段选择性序列化功能解析
2025-06-25 06:48:59作者:彭桢灵Jeremy
Apache Fury 作为一款高性能的 Java 序列化框架,在最新开发中引入了一项重要功能:基于注解的字段选择性序列化机制。这项功能为开发者提供了更灵活的字段控制方式,能够显著提升复杂对象序列化的精确性和安全性。
功能背景
在传统的 Java 序列化场景中,开发者通常需要处理两种极端情况:要么序列化所有非 transient 字段,要么手动标记大量 transient 字段来排除不需要序列化的属性。这种二元选择在实际项目中往往不够灵活,特别是当项目需要从其他序列化方案迁移到 Fury 时,原有的字段控制机制可能无法直接兼容。
技术实现
Fury 通过引入 @Expose
注解解决了这个问题。该注解的工作机制如下:
- 选择性序列化:只有被
@Expose
标记的字段才会参与序列化过程 - 互斥规则:字段不能同时标注
@Expose
和@Ignore
,否则会抛出 RuntimeException - 运行时验证:在对象序列化时会进行注解冲突检查
核心实现位于 Descriptor 类的字段描述符创建逻辑中,框架会过滤掉未标记 @Expose
的字段,仅保留需要序列化的属性参与后续的代码生成和序列化过程。
使用示例
// 定义数据类
@Data
@AllArgsConstructor
class UserData {
@Expose String username; // 将被序列化
@Expose int loginCount; // 将被序列化
String password; // 不会被序列化
@Expose Map<String, String> preferences; // 将被序列化
Map<String, String> tempData; // 不会被序列化
}
// 序列化/反序列化测试
Fury fury = Fury.builder().requireClassRegistration(false).build();
UserData original = new UserData("admin", 10, "secret",
Map.of("theme", "dark"), Map.of("tmp", "value"));
UserData deserialized = fury.deserialize(fury.serialize(original));
// 验证结果
assertEquals("admin", deserialized.getUsername()); // 保留
assertEquals(10, deserialized.getLoginCount()); // 保留
assertNull(deserialized.getPassword()); // 未保留
assertNotNull(deserialized.getPreferences()); // 保留
assertNull(deserialized.getTempData()); // 未保留
设计考量
- 注解命名:选择
@Expose
而非@Include
是为了与常见序列化库的命名习惯保持一致 - 严格模式:禁止同时使用
@Expose
和@Ignore
可以避免配置冲突 - 默认行为:保持向后兼容,未启用该功能时仍按原有逻辑处理
最佳实践
- 迁移策略:从其他序列化方案迁移时,可以批量添加
@Expose
注解替代原有的字段控制机制 - 安全建议:敏感字段可以不添加注解,无需再显式标记为 transient
- 性能优化:对于大型对象,只序列化必要字段可以减少 payload 大小
总结
Apache Fury 的这项增强功能为字段序列化控制提供了更精细的粒度,特别适合需要精确控制序列化字段的场景。通过注解驱动的方式,既保持了代码的简洁性,又提供了必要的灵活性。该功能已在最新快照版本中提供,即将随正式版本发布,建议开发者关注更新并评估在项目中的应用价值。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0266cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp论坛排行榜项目中的错误日志规范要求3 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中React实验项目的分类修正6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析9 freeCodeCamp课程页面空白问题的技术分析与解决方案10 freeCodeCamp博客页面工作坊中的断言方法优化建议
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
143
1.92 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
274

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
929
553

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
422
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
65

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8