PostgresML训练过程中数据分割问题的分析与解决
2025-06-03 13:18:03作者:裴麒琰
问题背景
在使用PostgresML进行机器学习模型训练时,开发人员遇到了一个典型的错误场景:首次训练能够成功执行,但后续尝试使用不同算法重新训练时却出现了"called Option::unwrap() on a None value"的错误。这个现象看似矛盾,实则揭示了PostgresML内部数据分割机制的一个重要特性。
问题复现与现象
开发人员按照以下步骤复现了问题:
- 创建了一个包含向量和布尔结果的数据表pgml.commits_build
- 初始插入了5条测试数据
- 首次调用pgml.train函数进行线性分类模型训练成功
- 尝试使用ridge算法重新训练时出现错误
当增加数据量到10条后,问题依然存在,这表明问题并非简单的数据量不足导致。
技术原理分析
PostgresML的训练过程包含几个关键步骤:
- 数据分割:默认情况下,系统会将数据集按0.75:0.25的比例分割为训练集和测试集
- 模型训练:在训练集上拟合模型
- 性能评估:在测试集上评估模型性能
问题的根源在于测试集样本量不足。当使用5条数据时,测试集仅包含1条数据(5×0.25=1.25,向下取整为1),这导致无法计算有意义的统计指标。而首次训练成功是因为它只需要完成模型拟合,不强制要求评估步骤。
解决方案
针对这一问题,开发者可以采取以下几种策略:
- 增加数据量:确保测试集有足够样本,建议至少20条数据
- 调整分割比例:通过test_size参数增大训练集比例
- 跳过评估:对于小数据集,可以设置skip_test=True
最佳实践建议
在使用PostgresML进行机器学习时,建议遵循以下原则:
- 数据准备阶段确保样本量充足,特别是分类问题中每个类别都要有代表性样本
- 对于小数据集,考虑使用交叉验证而非简单分割
- 监控训练过程中的警告信息,它们可能提示潜在问题
- 在生产环境中,建议明确指定test_size参数而非依赖默认值
总结
PostgresML的这一行为实际上反映了机器学习实践中的一个基本原则:数据质量与数量直接影响模型可靠性。开发者在享受PostgresML便利性的同时,仍需保持对数据分布的敏感性,合理配置训练参数,才能获得稳定可靠的模型性能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
520
3.7 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
183
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
301
348
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1