Harvester项目中OS镜像空间占用差异问题分析
2025-06-14 18:42:12作者:虞亚竹Luna
问题背景
在Harvester项目(一个基于Kubernetes的轻量级虚拟化管理平台)的安装过程中,发现了一个关于操作系统镜像空间占用的异常现象。具体表现为:在初始安装完成后,被动镜像(passive.img)占用的磁盘空间几乎是主动镜像(active.img)的两倍(3.1GB vs 1.7GB)。这种差异会导致COS_STATE分区的可用空间减少,进而可能影响系统升级操作。
技术分析
稀疏文件的概念
要理解这个问题,首先需要了解稀疏文件(Spare File)的概念。稀疏文件是一种特殊类型的文件,它允许文件系统高效地存储主要包含零(空数据)的大文件。在磁盘上,稀疏文件只实际占用非零数据部分的空间,而文件系统会记录文件的逻辑大小。
问题根源
通过技术分析,我们发现问题的根源在于Elemental工具包中的文件复制机制。具体来说:
active.img实际上是一个稀疏文件,其逻辑大小约为3GB,但实际磁盘使用量只有1.7GB- 当Elemental工具包通过
CopyFileImg()函数复制这个文件时,使用了golang的io.Copy()方法 io.Copy()会进行逐字节复制,导致生成的passive.img成为一个完全展开的非稀疏文件,占用了完整的3GB空间
影响评估
这种空间占用差异会导致以下潜在问题:
- COS_STATE分区的可用空间减少,可能影响后续系统升级操作
- 在磁盘空间有限的系统上,可能导致升级失败或其他存储相关问题
- 浪费了宝贵的存储资源,特别是在嵌入式或资源受限的环境中
解决方案
针对这个问题,开发团队提出了一个简单而有效的解决方案:
- 在Harvester安装程序完成Elemental的操作后,额外执行一个
cp active.img passive.img命令 - 标准的
cp命令能够识别并保持稀疏文件的特性 - 这样生成的
passive.img将和active.img一样,保持约1.7GB的实际磁盘使用量
技术实现细节
这个修复方案的关键在于利用了Unix/Linux系统中cp命令对稀疏文件的智能处理能力。与io.Copy()的逐字节复制不同,cp命令能够:
- 检测源文件的稀疏特性
- 在目标文件中保持相同的稀疏结构
- 避免不必要地填充零数据块
- 最终生成一个空间使用效率与源文件相同的副本
验证与测试
该修复方案已经过充分测试:
- 在Harvester v1.4.0和v1.3.2版本上验证了问题存在
- 修复后验证了两种镜像文件的空间占用一致
- 确认修复不会影响系统其他功能的正常运行
- 确认修复能够有效解决升级过程中可能出现的空间不足问题
总结
这个案例展示了在系统级软件开发中,对底层文件操作细节理解的重要性。通过识别稀疏文件处理的问题,并利用系统工具的特性,开发团队实现了一个简单而高效的解决方案,有效优化了存储空间使用,提升了系统的可靠性。
对于使用Harvester的用户来说,这个修复意味着更可靠的升级体验和更高效的存储空间利用,特别是在资源受限的环境中。这也提醒开发者,在处理大文件或系统镜像时,应当特别注意文件稀疏性等特性,以确保最佳的性能和资源利用率。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
操作系统概念第六版PDF资源全面指南:适用场景与使用教程 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
376
3.26 K
暂无简介
Dart
619
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
262
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
790
77