首页
/ PyTorch Lightning与DeepSpeed集成中的梯度累积机制解析

PyTorch Lightning与DeepSpeed集成中的梯度累积机制解析

2025-05-05 04:55:10作者:何举烈Damon

概述

在使用PyTorch Lightning框架进行深度学习训练时,与DeepSpeed集成后会出现一个有趣的现象:当启用DeepSpeed策略后,训练过程中优化器似乎会在每个批次(batch)后都被调用,而忽略了设置的梯度累积参数。本文将深入分析这一现象背后的技术原理。

现象观察

在标准PyTorch Lightning训练流程中,设置trainer.accumulate_grad_batches=32会确保优化器每32个批次才更新一次参数。但当使用strategy=deepspeed_stage_2时,从表面上看优化器似乎每个批次都会被调用。

技术原理

1. DeepSpeed的梯度累积机制

DeepSpeed框架内部实现了自己的梯度累积逻辑。当PyTorch Lightning检测到使用了DeepSpeed策略时,它会将梯度累积的控制权完全交给DeepSpeed处理。这是通过strategy.handles_gradient_accumulation标志实现的,当该标志为True时,Lightning会跳过自身的梯度累积逻辑。

2. 调用链分析

虽然Lightning的optimizer_step回调会在每个批次被触发,但这并不意味着真正的参数更新。DeepSpeed的优化器引擎会在内部维护梯度累积状态,只有当累积达到指定步数时才会执行实际的参数更新。

3. 验证方法

可以通过以下方式验证梯度累积确实在工作:

  1. 自定义优化器类,重写step方法并添加日志输出
  2. 比较使用和不使用DeepSpeed时的训练效果
  3. 监控内存使用情况,观察梯度累积的效果

最佳实践

1. 优化器配置

在PyTorch Lightning中,推荐通过configure_optimizers方法定义优化器和学习率调度器,而不是在DeepSpeed配置中重复指定。DeepSpeed会自动使用Lightning提供的优化器配置。

2. 调试技巧

当需要调试DeepSpeed训练过程时,可以采用以下方法:

from torch.optim import SGD

class DebugSGD(SGD):
    def step(self, closure=None):
        print("实际参数更新发生")
        return super().step(closure)
        
# 在LightningModule中使用
def configure_optimizers(self):
    return DebugSGD(self.parameters(), lr=0.1)

结论

PyTorch Lightning与DeepSpeed的集成采用了分工协作的设计模式:Lightning负责整体训练流程的控制,而DeepSpeed则专注于分布式训练和优化的具体实现。这种设计既保持了Lightning的简洁接口,又充分利用了DeepSpeed的高性能特性。理解这一协作机制有助于开发者更有效地使用这两个强大的工具。

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8