Quivr项目中CRAG数据集子集划分的技术实现
2025-05-03 15:02:20作者:盛欣凯Ernestine
背景介绍
在自然语言处理和信息检索领域,大规模数据集的合理划分对于模型训练和评估至关重要。Quivr项目中的CRAG数据集是一个包含大量问答对和HTML文档的综合性数据集,主要用于检索和生成任务的评估。
数据集划分需求
原始CRAG数据集规模较大,直接使用存在以下挑战:
- 计算资源消耗大
- 实验周期长
- 难以进行快速迭代
为解决这些问题,技术团队决定将数据集划分为更小的子集,同时保持原始数据集的统计特性。
技术实现方案
分层抽样方法
团队采用了分层抽样(stratified sampling)技术来创建子集,这种方法能够:
- 保持原始数据集的分布特性
- 确保每个子集具有代表性
- 避免抽样偏差
子集规格
每个子集包含:
- 135个问题
- 每个问题对应5个HTML文档
- 总计675个文档
实现细节
- 问题划分:首先将原始问题集均匀划分为20个子集
- 文档关联:保持问题与对应文档的关联关系
- 格式保留:所有文档保持原始HTML格式不变
- 质量控制:验证每个子集的统计特性与原始数据集一致
技术优势
这种划分方式带来了多项优势:
- 灵活性:研究人员可以选择使用完整数据集或特定子集
- 效率:小规模实验可以快速完成
- 可重复性:相同子集上的实验结果可直接比较
- 资源友好:降低了对计算资源的要求
应用场景
划分后的子集特别适合:
- 快速原型开发
- 超参数调优
- 算法对比测试
- 教学演示环境
总结
Quivr项目通过科学的数据集划分方法,为研究人员提供了更加灵活高效的实验环境。这种技术实现不仅解决了大规模数据集的使用难题,也为后续的检索和生成任务评估奠定了坚实基础。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217