Kedro 0.19.12版本发布:数据管道与云存储能力升级
Kedro是一个优秀的开源Python框架,专门用于构建可维护、可扩展的数据科学和机器学习管道。它采用了软件工程的最佳实践,为数据科学家和工程师提供了标准化的项目结构和开发模式。
核心功能增强
数据目录过滤功能
新版本引入了KedroDataCatalog.filter()方法,这是一个非常实用的功能升级。通过这个方法,开发者可以基于数据集名称和类型进行灵活筛选。例如,在处理大型项目时,可以快速过滤出所有CSV类型的数据集,或者筛选出特定前缀的数据集,这大大提升了开发效率。
命名空间节点分组
Pipeline.grouped_nodes_by_namespace属性的加入为插件开发者带来了便利。这个属性返回按命名空间分组的节点字典,使得插件能够更轻松地将属于同一命名空间的节点一起部署。这一改进特别适合需要按功能模块部署的场景。
云存储配置支持
0.19.12版本扩展了--conf-source的功能,现在可以直接从S3等云存储位置加载配置。这意味着团队可以将配置文件集中存储在云端,实现配置的统一管理和跨环境共享,这对于分布式团队和云原生部署尤为重要。
重要改进与修复
数据目录优化
开发团队对DataCatalog进行了多项优化,包括改进了_LazyDataset的打印显示效果,使其在调试时更加直观。同时,针对MemoryDataset处理Ibis Tables时的复制模式进行了修正,确保其能正确推断assign模式而非之前的deepcopy。
执行器优化
SequentialRunner的执行方式进行了调整,现在明确保证不使用执行器池,确保真正的单线程执行。这一改变消除了潜在的并发问题,使得执行行为更加可预测。
开发工具改进
修复了%load_node魔法命令与新版Jupyter Notebook(>=7.2.0)的兼容性问题,提升了开发体验。同时移除了Kedro Viz工具的默认集成,使其成为可选组件。
文档更新与最佳实践
文档方面,新增了对Delta Lake和Iceberg版本控制的支持说明,帮助用户更好地利用这些技术进行数据版本管理。节点分组部署的文档为插件开发者提供了明确指导。
特别值得注意的是,文档更新了对命名空间嵌套使用的建议,反映了项目团队对架构设计的最新思考。这些最佳实践的分享对于构建可维护的大型项目非常有价值。
总结
Kedro 0.19.12版本在数据管理、云集成和开发体验方面都有显著提升。新加入的数据目录过滤和云配置支持功能,展现了Kedro对现代数据工程需求的积极响应。命名空间节点分组则为复杂项目的模块化部署提供了更好的支持。这些改进共同强化了Kedro作为企业级数据管道框架的地位。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00