Terragrunt多云架构配置实践指南
2025-05-27 08:42:16作者:齐添朝
多云环境下的Terragrunt架构设计
在当今多云环境中,如何优雅地使用Terragrunt管理跨云平台的基础设施是一个常见挑战。本文将深入探讨如何构建一个支持AWS和Azure双云环境的Terragrunt项目结构。
典型项目结构分析
一个合理的多云Terragrunt项目结构通常如下所示:
├── terragrunt.hcl
├── aws
│ ├── providers.hcl
│ ├── main
│ │ ├── account.hcl
│ │ ├── us-east-1
│ │ │ ├── region.hcl
│ │ │ └── staging
│ │ │ ├── env.hcl
│ │ │ └── some_app
│ │ │ └── terragrunt.hcl
└── azure
├── providers.hcl
├── main
│ ├── subscription.hcl
│ ├── eastus
│ │ ├── region.hcl
│ │ └── production
│ │ ├── env.hcl
│ │ └── some_app
│ │ └── terragrunt.hcl
这种结构清晰地分离了不同云平台的配置,同时保持了环境(如staging/production)和区域(如us-east-1/eastus)的一致性。
配置文件的职责划分
根级terragrunt.hcl
根目录下的terragrunt.hcl应该只包含真正跨云平台通用的配置项:
locals {
namespace = "some-company"
# 读取各层级配置
provider_vars = read_terragrunt_config(find_in_parent_folders("providers.hcl"))
region_vars = read_terragrunt_config(find_in_parent_folders("region.hcl"))
environment_vars = read_terragrunt_config(find_in_parent_folders("env.hcl"))
}
inputs = merge(
local.provider_vars.locals,
local.region_vars.locals,
local.environment_vars.locals,
{
namespace = local.namespace
}
)
云平台特定的providers.hcl
每个云平台目录下的providers.hcl负责定义该平台特有的配置:
AWS示例:
locals {
account_vars = read_terragrunt_config(find_in_parent_folders("account.hcl"))
aws_account_name = local.account_vars.locals.aws_account_name
aws_account_id = local.account_vars.locals.aws_account_id
aws_region = local.region_vars.locals.aws_region
}
generate "provider" {
path = "provider.tf"
if_exists = "overwrite_terragrunt"
contents = <<EOF
provider "aws" {
region = "${local.aws_region}"
allowed_account_ids = ["${local.aws_account_id}"]
default_tags {
tags = {
terraformed = "true"
}
}
}
EOF
}
remote_state {
backend = "s3"
config = {
bucket = "terraform-state-${local.aws_account_name}-${local.aws_region}"
dynamodb_table = "terraform-locks"
encrypt = true
key = "${path_relative_to_include()}/terraform.tfstate"
region = local.aws_region
}
}
Azure示例:
locals {
subscription_vars = read_terragrunt_config(find_in_parent_folders("subscription.hcl"))
azure_region = local.region_vars.locals.azure_region
subscription_id = local.subscription_vars.locals.subscription_id
}
generate "provider" {
path = "provider.tf"
if_exists = "overwrite_terragrunt"
contents = <<EOF
provider "azurerm" {
features {}
}
EOF
}
remote_state {
backend = "azurerm"
config = {
storage_account_name = local.namespace
container_name = "terraform-state"
key = "${path_relative_to_include()}/terraform.tfstate"
resource_group_name = local.namespace
}
}
命名规范的最佳实践
在多云环境中,变量命名需要特别注意:
- 区域命名:建议使用通用名称
region
而非aws_region
或azure_region
,让目录上下文决定其含义 - 账户命名:可以考虑统一使用
account
而非混合使用account
(AWS)和subscription
(Azure) - 环境变量:保持完全一致,如都使用
environment
而非env
或stage
解决include层级限制
Terragrunt只允许一级include,这是设计上的限制而非bug。解决方案是:
- 避免使用根级include,改为使用
read_terragrunt_config
读取共享配置 - 每个模块只include其直接父级的配置(如providers.hcl)
- 通过
find_in_parent_folders
函数向上查找其他需要的配置
例如模块级的terragrunt.hcl应简化为:
terraform {
source = "git::git@github.com:redacted.git//some_app"
}
include "providers" {
path = find_in_parent_folders("providers.hcl")
}
配置合并策略
使用merge
函数合并配置时,建议遵循以下顺序:
- 最通用的配置(如namespace)放在最底层
- 云平台特定的配置(如region, account)放在中间层
- 环境特定的配置(如environment)放在最上层
这样可以确保特定性强的配置覆盖通用配置。
总结
构建多云Terragrunt项目时,关键在于清晰的目录结构和合理的配置分层。通过将通用配置与云平台特定配置分离,并利用Terragrunt的配置合并功能,可以创建出既灵活又易于维护的多云基础设施代码库。记住保持命名一致性,并合理利用read_terragrunt_config
而非多层include来解决配置共享问题。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133