Terragrunt多云架构配置实践指南
2025-05-27 21:10:36作者:齐添朝
多云环境下的Terragrunt架构设计
在当今多云环境中,如何优雅地使用Terragrunt管理跨云平台的基础设施是一个常见挑战。本文将深入探讨如何构建一个支持AWS和Azure双云环境的Terragrunt项目结构。
典型项目结构分析
一个合理的多云Terragrunt项目结构通常如下所示:
├── terragrunt.hcl
├── aws
│ ├── providers.hcl
│ ├── main
│ │ ├── account.hcl
│ │ ├── us-east-1
│ │ │ ├── region.hcl
│ │ │ └── staging
│ │ │ ├── env.hcl
│ │ │ └── some_app
│ │ │ └── terragrunt.hcl
└── azure
├── providers.hcl
├── main
│ ├── subscription.hcl
│ ├── eastus
│ │ ├── region.hcl
│ │ └── production
│ │ ├── env.hcl
│ │ └── some_app
│ │ └── terragrunt.hcl
这种结构清晰地分离了不同云平台的配置,同时保持了环境(如staging/production)和区域(如us-east-1/eastus)的一致性。
配置文件的职责划分
根级terragrunt.hcl
根目录下的terragrunt.hcl应该只包含真正跨云平台通用的配置项:
locals {
namespace = "some-company"
# 读取各层级配置
provider_vars = read_terragrunt_config(find_in_parent_folders("providers.hcl"))
region_vars = read_terragrunt_config(find_in_parent_folders("region.hcl"))
environment_vars = read_terragrunt_config(find_in_parent_folders("env.hcl"))
}
inputs = merge(
local.provider_vars.locals,
local.region_vars.locals,
local.environment_vars.locals,
{
namespace = local.namespace
}
)
云平台特定的providers.hcl
每个云平台目录下的providers.hcl负责定义该平台特有的配置:
AWS示例:
locals {
account_vars = read_terragrunt_config(find_in_parent_folders("account.hcl"))
aws_account_name = local.account_vars.locals.aws_account_name
aws_account_id = local.account_vars.locals.aws_account_id
aws_region = local.region_vars.locals.aws_region
}
generate "provider" {
path = "provider.tf"
if_exists = "overwrite_terragrunt"
contents = <<EOF
provider "aws" {
region = "${local.aws_region}"
allowed_account_ids = ["${local.aws_account_id}"]
default_tags {
tags = {
terraformed = "true"
}
}
}
EOF
}
remote_state {
backend = "s3"
config = {
bucket = "terraform-state-${local.aws_account_name}-${local.aws_region}"
dynamodb_table = "terraform-locks"
encrypt = true
key = "${path_relative_to_include()}/terraform.tfstate"
region = local.aws_region
}
}
Azure示例:
locals {
subscription_vars = read_terragrunt_config(find_in_parent_folders("subscription.hcl"))
azure_region = local.region_vars.locals.azure_region
subscription_id = local.subscription_vars.locals.subscription_id
}
generate "provider" {
path = "provider.tf"
if_exists = "overwrite_terragrunt"
contents = <<EOF
provider "azurerm" {
features {}
}
EOF
}
remote_state {
backend = "azurerm"
config = {
storage_account_name = local.namespace
container_name = "terraform-state"
key = "${path_relative_to_include()}/terraform.tfstate"
resource_group_name = local.namespace
}
}
命名规范的最佳实践
在多云环境中,变量命名需要特别注意:
- 区域命名:建议使用通用名称
region而非aws_region或azure_region,让目录上下文决定其含义 - 账户命名:可以考虑统一使用
account而非混合使用account(AWS)和subscription(Azure) - 环境变量:保持完全一致,如都使用
environment而非env或stage
解决include层级限制
Terragrunt只允许一级include,这是设计上的限制而非bug。解决方案是:
- 避免使用根级include,改为使用
read_terragrunt_config读取共享配置 - 每个模块只include其直接父级的配置(如providers.hcl)
- 通过
find_in_parent_folders函数向上查找其他需要的配置
例如模块级的terragrunt.hcl应简化为:
terraform {
source = "git::git@github.com:redacted.git//some_app"
}
include "providers" {
path = find_in_parent_folders("providers.hcl")
}
配置合并策略
使用merge函数合并配置时,建议遵循以下顺序:
- 最通用的配置(如namespace)放在最底层
- 云平台特定的配置(如region, account)放在中间层
- 环境特定的配置(如environment)放在最上层
这样可以确保特定性强的配置覆盖通用配置。
总结
构建多云Terragrunt项目时,关键在于清晰的目录结构和合理的配置分层。通过将通用配置与云平台特定配置分离,并利用Terragrunt的配置合并功能,可以创建出既灵活又易于维护的多云基础设施代码库。记住保持命名一致性,并合理利用read_terragrunt_config而非多层include来解决配置共享问题。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1