Terragrunt多云架构配置实践指南
2025-05-27 06:33:40作者:齐添朝
多云环境下的Terragrunt架构设计
在当今多云环境中,如何优雅地使用Terragrunt管理跨云平台的基础设施是一个常见挑战。本文将深入探讨如何构建一个支持AWS和Azure双云环境的Terragrunt项目结构。
典型项目结构分析
一个合理的多云Terragrunt项目结构通常如下所示:
├── terragrunt.hcl
├── aws
│ ├── providers.hcl
│ ├── main
│ │ ├── account.hcl
│ │ ├── us-east-1
│ │ │ ├── region.hcl
│ │ │ └── staging
│ │ │ ├── env.hcl
│ │ │ └── some_app
│ │ │ └── terragrunt.hcl
└── azure
├── providers.hcl
├── main
│ ├── subscription.hcl
│ ├── eastus
│ │ ├── region.hcl
│ │ └── production
│ │ ├── env.hcl
│ │ └── some_app
│ │ └── terragrunt.hcl
这种结构清晰地分离了不同云平台的配置,同时保持了环境(如staging/production)和区域(如us-east-1/eastus)的一致性。
配置文件的职责划分
根级terragrunt.hcl
根目录下的terragrunt.hcl应该只包含真正跨云平台通用的配置项:
locals {
namespace = "some-company"
# 读取各层级配置
provider_vars = read_terragrunt_config(find_in_parent_folders("providers.hcl"))
region_vars = read_terragrunt_config(find_in_parent_folders("region.hcl"))
environment_vars = read_terragrunt_config(find_in_parent_folders("env.hcl"))
}
inputs = merge(
local.provider_vars.locals,
local.region_vars.locals,
local.environment_vars.locals,
{
namespace = local.namespace
}
)
云平台特定的providers.hcl
每个云平台目录下的providers.hcl负责定义该平台特有的配置:
AWS示例:
locals {
account_vars = read_terragrunt_config(find_in_parent_folders("account.hcl"))
aws_account_name = local.account_vars.locals.aws_account_name
aws_account_id = local.account_vars.locals.aws_account_id
aws_region = local.region_vars.locals.aws_region
}
generate "provider" {
path = "provider.tf"
if_exists = "overwrite_terragrunt"
contents = <<EOF
provider "aws" {
region = "${local.aws_region}"
allowed_account_ids = ["${local.aws_account_id}"]
default_tags {
tags = {
terraformed = "true"
}
}
}
EOF
}
remote_state {
backend = "s3"
config = {
bucket = "terraform-state-${local.aws_account_name}-${local.aws_region}"
dynamodb_table = "terraform-locks"
encrypt = true
key = "${path_relative_to_include()}/terraform.tfstate"
region = local.aws_region
}
}
Azure示例:
locals {
subscription_vars = read_terragrunt_config(find_in_parent_folders("subscription.hcl"))
azure_region = local.region_vars.locals.azure_region
subscription_id = local.subscription_vars.locals.subscription_id
}
generate "provider" {
path = "provider.tf"
if_exists = "overwrite_terragrunt"
contents = <<EOF
provider "azurerm" {
features {}
}
EOF
}
remote_state {
backend = "azurerm"
config = {
storage_account_name = local.namespace
container_name = "terraform-state"
key = "${path_relative_to_include()}/terraform.tfstate"
resource_group_name = local.namespace
}
}
命名规范的最佳实践
在多云环境中,变量命名需要特别注意:
- 区域命名:建议使用通用名称
region而非aws_region或azure_region,让目录上下文决定其含义 - 账户命名:可以考虑统一使用
account而非混合使用account(AWS)和subscription(Azure) - 环境变量:保持完全一致,如都使用
environment而非env或stage
解决include层级限制
Terragrunt只允许一级include,这是设计上的限制而非bug。解决方案是:
- 避免使用根级include,改为使用
read_terragrunt_config读取共享配置 - 每个模块只include其直接父级的配置(如providers.hcl)
- 通过
find_in_parent_folders函数向上查找其他需要的配置
例如模块级的terragrunt.hcl应简化为:
terraform {
source = "git::git@github.com:redacted.git//some_app"
}
include "providers" {
path = find_in_parent_folders("providers.hcl")
}
配置合并策略
使用merge函数合并配置时,建议遵循以下顺序:
- 最通用的配置(如namespace)放在最底层
- 云平台特定的配置(如region, account)放在中间层
- 环境特定的配置(如environment)放在最上层
这样可以确保特定性强的配置覆盖通用配置。
总结
构建多云Terragrunt项目时,关键在于清晰的目录结构和合理的配置分层。通过将通用配置与云平台特定配置分离,并利用Terragrunt的配置合并功能,可以创建出既灵活又易于维护的多云基础设施代码库。记住保持命名一致性,并合理利用read_terragrunt_config而非多层include来解决配置共享问题。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217