RUCAIBox/RecBole推荐系统框架快速入门指南
2026-02-04 04:02:24作者:傅爽业Veleda
前言
RUCAIBox/RecBole是一个功能强大的推荐系统框架,为研究人员和开发者提供了构建、训练和评估推荐模型的完整工具链。本文将详细介绍如何使用该框架进行通用推荐任务的快速开发,以BPR模型在ml-100k数据集上的应用为例。
准备工作
数据集准备
RecBole内置了多个常用数据集,包括ml-100k(MovieLens 100K数据集),可以直接使用。该数据集包含:
- 943位用户
- 1682部电影
- 约10万条评分记录
对于自定义数据集,需要按照特定格式准备数据,包括用户ID、物品ID和交互信息等基本字段。
配置文件详解
RecBole使用YAML格式的配置文件来统一管理各种参数设置。下面我们分解配置文件的各个部分:
1. 数据集配置
USER_ID_FIELD: user_id
ITEM_ID_FIELD: item_id
load_col:
inter: [user_id, item_id]
USER_ID_FIELD和ITEM_ID_FIELD指定用户和物品的ID字段名load_col定义需要加载的数据列
2. 模型配置
以BPR模型为例:
embedding_size: 64
BPR(Bayesian Personalized Ranking)是一种经典的推荐算法,它通过学习用户和物品的潜在特征向量,并优化这些向量的排序来产生推荐。
3. 训练与评估配置
epochs: 500
train_batch_size: 4096
eval_batch_size: 4096
train_neg_sample_args:
distribution: uniform
sample_num: 1
eval_args:
group_by: user
order: RO
split: {'RS': [0.8,0.1,0.1]}
mode: full
metrics: ['Recall', 'MRR', 'NDCG', 'Hit', 'Precision']
topk: 10
valid_metric: MRR@10
关键参数说明:
epochs: 训练轮数batch_size: 批处理大小neg_sample_args: 负采样策略eval_args: 评估策略metrics: 评估指标topk: 推荐列表长度
两种运行方式
1. 通过API运行
创建Python脚本(如run.py):
from recbole.quick_start import run_recbole
run_recbole(model='BPR', dataset='ml-100k', config_file_list=['test.yaml'])
执行命令:
python run.py
2. 通过命令行运行
直接使用框架提供的运行脚本:
python run_recbole.py --model=BPR --dataset=ml-100k --config_files=test.yaml
如需修改参数,如embedding_size:
python run_recbole.py --model=BPR --dataset=ml-100k --config_files=test.yaml --embedding_size=100
结果解读
运行完成后,控制台会输出类似以下信息:
valid result:
recall@10 : 0.2162
mrr@10 : 0.3752
ndcg@10 : 0.2284
hit@10 : 0.7508
precision@10 : 0.1602
test result:
recall@10 : 0.2523
mrr@10 : 0.4855
ndcg@10 : 0.292
hit@10 : 0.7953
precision@10 : 0.1962
指标说明:
- Recall@K: 在前K个推荐中命中的相关物品比例
- MRR@K: 平均倒数排名,衡量相关物品的排名位置
- NDCG@K: 归一化折损累积增益,考虑排名位置的相关性
- Hit@K: 前K个推荐中是否至少命中一个相关物品
- Precision@K: 前K个推荐中相关物品的比例
进阶功能
- TensorBoard支持:可以可视化训练过程中的损失和评估指标变化
- 自定义模型:支持用户实现自己的推荐算法
- 超参数调优:提供自动调参工具
- 分布式训练:支持多GPU训练加速
总结
通过本文,我们学习了如何使用RUCAIBox/RecBole框架快速搭建一个基于BPR模型的推荐系统。该框架提供了从数据加载、模型训练到评估的完整流程,大大降低了推荐系统开发的入门门槛。对于想要深入研究的开发者,框架还提供了丰富的扩展接口和自定义选项。
建议初学者先从内置模型和数据集开始,熟悉流程后再尝试自定义数据和模型,逐步掌握推荐系统的开发技巧。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350