使用CVAT API获取带标注的帧数据
2025-05-16 06:03:26作者:郜逊炳
CVAT(Computer Vision Annotation Tool)是一个开源的图像和视频标注工具,广泛应用于计算机视觉领域。本文将详细介绍如何通过CVAT的API接口获取带有标注信息的帧数据。
获取标注数据的基本方法
CVAT提供了多种方式来获取标注数据,开发者可以根据需求选择最适合的方法:
-
直接获取解析后的标注对象:通过
task.get_annotations()
方法可以直接获取已经解析好的标注对象,这些对象包含了所有标注的形状、标签等信息。 -
获取原始JSON数据:如果需要更底层的访问,可以使用
task.api.retrieve_annotations()
方法获取原始的JSON格式标注数据。 -
导出完整数据集:CVAT支持将标注数据与图像一起导出为多种标准格式,如"CVAT for images 1.1"等。
代码实现示例
以下是一个完整的Python示例,展示了如何通过CVAT SDK获取标注数据:
import json
import sys
from argparse import ArgumentParser
from typing import List, Optional
from cvat_sdk import make_client
def main():
# 初始化客户端连接
with make_client("https://app.cvat.ai", port=443,
credentials=("用户名", "密码")) as client:
# 设置组织信息(如果需要)
client.organization_slug = "组织名称"
client.config.status_check_period = 2
# 获取任务对象
task = client.tasks.retrieve(任务ID)
# 方法1:获取解析后的标注对象
annotations = task.get_annotations()
print(annotations.shapes[0].to_dict()) # 打印第一个形状标注
# 方法2:获取原始JSON标注数据
(_, response) = task.api.retrieve_annotations(task.id, _parse_response=False)
print(json.loads(response.data))
# 方法3:导出完整数据集
task.export_dataset(
format_name="CVAT for images 1.1",
filename=f"task-{task.id}-export.zip",
include_images=True
)
if __name__ == "__main__":
main()
高级应用:筛选带标注的帧
在实际应用中,我们可能需要只处理带有标注的帧。以下代码展示了如何识别并筛选出带有标注的帧:
# 获取所有标注
annotations = task.get_annotations()
# 收集所有带有标注的帧号
frames_with_annotations = set()
# 处理标签类型的标注
for tag in annotations.tags:
frames_with_annotations.add(tag.frame)
# 处理形状类型的标注(如边界框)
for shape in annotations.shapes:
frames_with_annotations.add(shape.frame)
# 获取任务元数据
meta = task.get_meta()
frame_step = int(meta.frame_filter.split("=")[-1]) if meta.frame_filter else 1
# 计算并移除没有标注的帧
all_frames = set(range(meta.start_frame, meta.stop_frame + 1, frame_step))
empty_frames = all_frames - frames_with_annotations
task.remove_frames_by_ids(list(empty_frames))
注意事项
-
认证信息:在实际应用中,应该使用安全的认证信息存储方式,而不是硬编码在脚本中。
-
性能考虑:对于大型数据集,直接导出所有数据可能会消耗大量时间和资源,建议分批处理。
-
标注类型:CVAT支持多种标注类型(边界框、多边形、关键点等),处理时需要根据实际标注类型进行相应调整。
-
任务与作业:上述示例针对的是任务(Task)级别的操作,如果是作业(Job)级别的操作,可以使用
client.jobs
代替client.tasks
。
通过上述方法,开发者可以灵活地从CVAT中获取所需的标注数据,为后续的计算机视觉模型训练或分析提供基础数据支持。
登录后查看全文
热门项目推荐
相关项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0267cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp论坛排行榜项目中的错误日志规范要求3 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中React实验项目的分类修正6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析9 freeCodeCamp课程页面空白问题的技术分析与解决方案10 freeCodeCamp博客页面工作坊中的断言方法优化建议
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.93 K

deepin linux kernel
C
22
6

React Native鸿蒙化仓库
C++
192
274

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
423
392

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
64
509