使用CVAT API获取带标注的帧数据
2025-05-16 10:01:32作者:郜逊炳
CVAT(Computer Vision Annotation Tool)是一个开源的图像和视频标注工具,广泛应用于计算机视觉领域。本文将详细介绍如何通过CVAT的API接口获取带有标注信息的帧数据。
获取标注数据的基本方法
CVAT提供了多种方式来获取标注数据,开发者可以根据需求选择最适合的方法:
-
直接获取解析后的标注对象:通过
task.get_annotations()方法可以直接获取已经解析好的标注对象,这些对象包含了所有标注的形状、标签等信息。 -
获取原始JSON数据:如果需要更底层的访问,可以使用
task.api.retrieve_annotations()方法获取原始的JSON格式标注数据。 -
导出完整数据集:CVAT支持将标注数据与图像一起导出为多种标准格式,如"CVAT for images 1.1"等。
代码实现示例
以下是一个完整的Python示例,展示了如何通过CVAT SDK获取标注数据:
import json
import sys
from argparse import ArgumentParser
from typing import List, Optional
from cvat_sdk import make_client
def main():
# 初始化客户端连接
with make_client("https://app.cvat.ai", port=443,
credentials=("用户名", "密码")) as client:
# 设置组织信息(如果需要)
client.organization_slug = "组织名称"
client.config.status_check_period = 2
# 获取任务对象
task = client.tasks.retrieve(任务ID)
# 方法1:获取解析后的标注对象
annotations = task.get_annotations()
print(annotations.shapes[0].to_dict()) # 打印第一个形状标注
# 方法2:获取原始JSON标注数据
(_, response) = task.api.retrieve_annotations(task.id, _parse_response=False)
print(json.loads(response.data))
# 方法3:导出完整数据集
task.export_dataset(
format_name="CVAT for images 1.1",
filename=f"task-{task.id}-export.zip",
include_images=True
)
if __name__ == "__main__":
main()
高级应用:筛选带标注的帧
在实际应用中,我们可能需要只处理带有标注的帧。以下代码展示了如何识别并筛选出带有标注的帧:
# 获取所有标注
annotations = task.get_annotations()
# 收集所有带有标注的帧号
frames_with_annotations = set()
# 处理标签类型的标注
for tag in annotations.tags:
frames_with_annotations.add(tag.frame)
# 处理形状类型的标注(如边界框)
for shape in annotations.shapes:
frames_with_annotations.add(shape.frame)
# 获取任务元数据
meta = task.get_meta()
frame_step = int(meta.frame_filter.split("=")[-1]) if meta.frame_filter else 1
# 计算并移除没有标注的帧
all_frames = set(range(meta.start_frame, meta.stop_frame + 1, frame_step))
empty_frames = all_frames - frames_with_annotations
task.remove_frames_by_ids(list(empty_frames))
注意事项
-
认证信息:在实际应用中,应该使用安全的认证信息存储方式,而不是硬编码在脚本中。
-
性能考虑:对于大型数据集,直接导出所有数据可能会消耗大量时间和资源,建议分批处理。
-
标注类型:CVAT支持多种标注类型(边界框、多边形、关键点等),处理时需要根据实际标注类型进行相应调整。
-
任务与作业:上述示例针对的是任务(Task)级别的操作,如果是作业(Job)级别的操作,可以使用
client.jobs代替client.tasks。
通过上述方法,开发者可以灵活地从CVAT中获取所需的标注数据,为后续的计算机视觉模型训练或分析提供基础数据支持。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
182
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
274
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.41 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1