Apache Paimon在Spark写入任务重试时的数据丢失问题分析
2025-06-28 22:55:00作者:郁楠烈Hubert
问题背景
在Apache Paimon 0.9版本与Spark 3.5.1的集成使用过程中,发现了一个潜在的数据一致性问题。当Spark任务在执行数据写入Paimon表的过程中发生任务重试时,可能会导致部分数据丢失的情况。这一问题在数据量较大且资源不足导致任务重试的场景下尤为明显。
问题现象
用户在使用Spark将数据集写入Paimon表时,观察到以下现象:
- 首次写入操作部分节点失败,触发了任务重试机制
- 两次重试分别写入了9,314,203和6,211,188条记录,总和应为15,525,391条
- 但最终查询Paimon表时仅得到15,476,552条记录
- 当增加执行器内存后,任务未发生重试,最终写入数据量为15,525,244条
问题根因分析
经过技术分析,该问题可能由以下几个因素共同导致:
- 写入覆盖机制:当Spark任务重试时,可能会覆盖第一次尝试已经写入的文件,而不是追加写入
- 事务一致性:Paimon表在Spark写入过程中可能没有完全实现原子性提交机制
- 资源竞争:内存不足导致的任务失败和重试加剧了数据不一致的风险
解决方案
针对这一问题,目前有以下几种可行的解决方案:
- 增加执行资源:如用户实践所示,增加执行器内存可以避免任务重试,从根本上解决问题
- 启用Spark检查点:通过配置Spark的checkpoint机制可以确保任务失败后能够正确恢复,避免数据丢失
- 写入模式调整:考虑使用追加(append)模式而非覆盖(overwrite)模式写入,降低数据冲突风险
- 版本升级:考虑升级到Paimon更高版本,可能已经修复了相关一致性问题
最佳实践建议
对于生产环境中使用Paimon进行大数据量写入的场景,建议采取以下预防措施:
- 预先评估并分配足够的计算资源
- 对于关键数据写入作业启用Spark检查点机制
- 监控作业执行情况,特别是任务重试次数
- 考虑分批写入大数据集,降低单次作业失败风险
- 定期验证写入数据的完整性
总结
数据一致性是大数据存储系统的核心要求之一。Apache Paimon作为新兴的数据湖存储格式,在与Spark等计算引擎集成时可能会遇到此类边界情况。通过合理配置和预防措施,可以有效地规避数据丢失风险,确保数据写入的完整性和可靠性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
React Native鸿蒙化仓库
JavaScript
287
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
226
91
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
439
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19