Apache Paimon在Spark写入任务重试时的数据丢失问题分析
2025-06-28 09:43:04作者:郁楠烈Hubert
问题背景
在Apache Paimon 0.9版本与Spark 3.5.1的集成使用过程中,发现了一个潜在的数据一致性问题。当Spark任务在执行数据写入Paimon表的过程中发生任务重试时,可能会导致部分数据丢失的情况。这一问题在数据量较大且资源不足导致任务重试的场景下尤为明显。
问题现象
用户在使用Spark将数据集写入Paimon表时,观察到以下现象:
- 首次写入操作部分节点失败,触发了任务重试机制
- 两次重试分别写入了9,314,203和6,211,188条记录,总和应为15,525,391条
- 但最终查询Paimon表时仅得到15,476,552条记录
- 当增加执行器内存后,任务未发生重试,最终写入数据量为15,525,244条
问题根因分析
经过技术分析,该问题可能由以下几个因素共同导致:
- 写入覆盖机制:当Spark任务重试时,可能会覆盖第一次尝试已经写入的文件,而不是追加写入
- 事务一致性:Paimon表在Spark写入过程中可能没有完全实现原子性提交机制
- 资源竞争:内存不足导致的任务失败和重试加剧了数据不一致的风险
解决方案
针对这一问题,目前有以下几种可行的解决方案:
- 增加执行资源:如用户实践所示,增加执行器内存可以避免任务重试,从根本上解决问题
- 启用Spark检查点:通过配置Spark的checkpoint机制可以确保任务失败后能够正确恢复,避免数据丢失
- 写入模式调整:考虑使用追加(append)模式而非覆盖(overwrite)模式写入,降低数据冲突风险
- 版本升级:考虑升级到Paimon更高版本,可能已经修复了相关一致性问题
最佳实践建议
对于生产环境中使用Paimon进行大数据量写入的场景,建议采取以下预防措施:
- 预先评估并分配足够的计算资源
- 对于关键数据写入作业启用Spark检查点机制
- 监控作业执行情况,特别是任务重试次数
- 考虑分批写入大数据集,降低单次作业失败风险
- 定期验证写入数据的完整性
总结
数据一致性是大数据存储系统的核心要求之一。Apache Paimon作为新兴的数据湖存储格式,在与Spark等计算引擎集成时可能会遇到此类边界情况。通过合理配置和预防措施,可以有效地规避数据丢失风险,确保数据写入的完整性和可靠性。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0137AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
JavaWeb企业门户网站源码 - 企业级门户系统开发指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 WebVideoDownloader:高效网页视频抓取工具全面使用指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
235
2.33 K

仓颉编译器源码及 cjdb 调试工具。
C++
113
79

暂无简介
Dart
536
117

React Native鸿蒙化仓库
JavaScript
216
291

Ascend Extension for PyTorch
Python
76
106

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
993
588

仓颉编程语言测试用例。
Cangjie
34
63

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
130
650