LM-Critic 项目启动与配置教程
2025-04-24 22:36:16作者:裴麒琰
1. 项目目录结构及介绍
LM-Critic项目的目录结构如下:
LM-Critic/
├── checkpoints/ # 存储训练过程中的模型检查点
├── data/ # 存储数据集
├── docs/ # 项目文档
├── experiments/ # 存储实验配置和结果
├── models/ # 模型定义和实现
├── notebooks/ # Jupyter笔记本和示例代码
├── scripts/ # 脚本文件,用于启动训练、测试等
├── src/ # 源代码,包括训练、评估等主要逻辑
├── tests/ # 单元测试和集成测试
├── tools/ # 工具脚本,如数据预处理等
└── train.py # 项目启动文件
目录详细介绍:
checkpoints/:保存训练过程中生成的模型权重和优化器状态,用于模型的保存和恢复。data/:存储项目所需的数据集,可能包括原始数据、预处理后的数据等。docs/:存放项目相关的文档,包括本项目教程。experiments/:包含实验的配置文件和实验结果,便于复现和比较不同实验设置的效果。models/:包含模型架构的定义和实现代码。notebooks/:Jupyter笔记本,可以用来进行交互式数据分析和实验。scripts/:包含用于启动项目、执行训练、测试等操作的脚本。src/:项目的核心代码,包括数据加载、模型训练、评估等主要逻辑。tests/:包含用于验证代码正确性的测试用例。tools/:存放辅助工具脚本,如数据预处理、数据增强等。train.py:项目的主启动文件,用于启动模型的训练过程。
2. 项目的启动文件介绍
项目的启动文件为train.py,其主要作用是:
- 解析命令行参数或配置文件,获取训练所需的参数。
- 加载数据集。
- 构建模型。
- 设置训练过程中的优化器和学习率调整策略。
- 启动训练循环,执行模型的训练过程。
以下是一个简化的train.py启动文件示例:
import argparse
from src.train import train_model
def main():
parser = argparse.ArgumentParser(description="Train the model.")
# 添加命令行参数
parser.add_argument("--epochs", type=int, default=10, help="Number of epochs to train.")
# 解析命令行参数
args = parser.parse_args()
# 调用训练函数
train_model(epochs=args.epochs)
if __name__ == "__main__":
main()
3. 项目的配置文件介绍
LM-Critic项目的配置文件通常位于experiments/目录下,使用.yaml或.json等格式。配置文件用于定义和修改训练过程中的各种参数,如数据集路径、模型结构、训练参数等。
以下是一个配置文件的示例:
# config.yaml
dataset:
train: data/train.csv
val: data/val.csv
model:
architecture: LSTM
hidden_size: 128
num_layers: 2
training:
epochs: 10
batch_size: 32
learning_rate: 0.001
在这个配置文件中,定义了数据集的路径、模型架构、模型参数以及训练参数。通过修改这个配置文件,可以方便地调整实验设置,而不需要直接修改代码。在训练时,可以通过命令行参数或程序逻辑来加载和使用这些配置。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248