Autograd项目中的Jacobian计算机制解析
2025-05-30 13:22:23作者:申梦珏Efrain
理解Jacobian矩阵的计算
在自动微分领域,Jacobian矩阵是一个非常重要的概念。它描述了多元向量值函数的一阶导数,即输出向量相对于输入向量的变化率。对于一个函数f: ℝⁿ → ℝᵐ,其Jacobian矩阵是一个m×n的矩阵,其中每个元素Jᵢⱼ = ∂fᵢ/∂xⱼ。
Autograd中的jacobian函数行为
Autograd库提供的jacobian函数有一个关键特性:它默认只计算函数对第一个参数的导数。这与数学上对Jacobian矩阵的传统定义有所不同,因为数学上的Jacobian通常是针对所有输入变量计算的。
当函数有多个参数时,比如f(v,M) = Mv,其中v是3维向量,M是3×3矩阵,完整的Jacobian应该包含对v和M的所有偏导数。然而,autograd的jacobian函数默认行为是:
# 默认只计算对第一个参数(v)的Jacobian
jacobian(f)(v, M) # 返回3×3矩阵,即∂f/∂v
多参数函数的Jacobian计算
要计算函数对所有参数的导数,需要显式指定argnum参数:
# 计算对第一个参数(v)的Jacobian
jacobian(f, 0)(v, M) # 返回3×3矩阵,即∂f/∂v
# 计算对第二个参数(M)的Jacobian
jacobian(f, 1)(v, M) # 返回3×3×3张量,即∂f/∂M
对于矩阵参数M,Jacobian的结果是一个三维张量,因为我们需要考虑:
- 输出向量的每个分量(3个)
- 输入矩阵的每个元素(3×3个)
实际应用中的建议
在实际使用autograd进行自动微分时,需要注意以下几点:
- 明确你想要计算的是对哪个参数的导数
- 对于多参数函数,考虑是否需要组合多个Jacobian
- 矩阵参数的Jacobian会变成高阶张量,要注意结果的形状
- 如果需要完整的Jacobian,可以分别计算后拼接
深入理解矩阵乘法的导数
以f(v,M) = Mv为例,我们可以更深入地分析其导数:
- 对v的导数:∂f/∂v = M,这是一个3×3矩阵
- 对M的导数:∂f/∂M是一个3×3×3张量,其中每个切片∂fᵢ/∂M是一个对角矩阵,对角线元素为v的对应分量
这种分块计算的方式在自动微分中很常见,理解这一点有助于更好地使用autograd等工具进行复杂的微分计算。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程视频测验中的Tab键导航问题解析5 freeCodeCamp课程中屏幕放大器知识点优化分析6 freeCodeCamp Cafe Menu项目中link元素的void特性解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 9 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析10 freeCodeCamp全栈开发课程中React实验项目的分类修正
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
95

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133