PaddleDetection训练日志保存方法详解
2025-05-17 23:53:09作者:滑思眉Philip
背景介绍
在使用PaddleDetection进行模型训练时,训练过程中的日志信息对于开发者来说非常重要。这些日志不仅记录了训练过程中的关键指标变化,还能帮助开发者分析模型性能、调试参数设置以及监控训练进度。然而,很多开发者在使用PaddleDetection时遇到了如何有效保存训练日志的问题。
标准日志保存方法
PaddleDetection提供了几种简单有效的方式来保存训练日志:
- 使用Linux重定向命令:这是最简单直接的方法,通过Linux系统的输出重定向功能,可以将所有终端输出保存到文件中。
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m paddle.distributed.launch --log_dir=log --gpus 0,1,2,3 tools/train.py -c configs/picodet/picodet_s_shufflenetv2_416_coco.yml --eval &> train.log 2>&1 &
这条命令中:
&> train.log表示将标准输出和标准错误都重定向到train.log文件2>&1确保错误输出也被捕获- 最后的
&表示在后台运行
- tee命令:如果希望在保存日志的同时还能在终端看到输出,可以使用tee命令:
python tools/train.py -c config.yml | tee train.log
高级日志配置方法
对于需要更精细控制日志输出的开发者,可以通过修改PaddleDetection的日志系统来实现:
-
理解日志系统架构:
- PaddleDetection使用Python标准库logging模块构建日志系统
- 日志配置主要在
ppdet/utils/logger.py文件中 - 系统会为不同模块创建多个logger实例
-
自定义日志路径: 可以通过修改全局变量来控制日志输出路径,具体实现步骤:
- 创建全局变量模块
global_variables.py - 在训练脚本中提前设置日志路径
- 修改logger.py中的setup_logger函数读取全局变量
- 创建全局变量模块
-
日志级别控制: 可以通过环境变量或代码修改日志级别,过滤不同重要程度的信息:
import logging logging.getLogger().setLevel(logging.INFO)
日志内容分析
PaddleDetection的训练日志通常包含以下重要信息:
- 训练配置参数
- 数据加载情况
- 训练过程中的损失值和评估指标
- 验证集上的性能表现
- 训练耗时和资源使用情况
最佳实践建议
- 对于常规使用,推荐使用简单的输出重定向方法
- 长期训练任务建议结合nohup使用,防止终端断开导致训练中断
- 分布式训练时,注意不同进程的日志可能会混合,可以考虑按进程ID分开保存
- 定期归档和清理日志文件,避免占用过多磁盘空间
通过合理配置和使用PaddleDetection的日志系统,开发者可以更好地监控训练过程,为模型优化和问题排查提供有力支持。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137