PaddleDetection训练日志保存方法详解
2025-05-17 13:03:20作者:滑思眉Philip
背景介绍
在使用PaddleDetection进行模型训练时,训练过程中的日志信息对于开发者来说非常重要。这些日志不仅记录了训练过程中的关键指标变化,还能帮助开发者分析模型性能、调试参数设置以及监控训练进度。然而,很多开发者在使用PaddleDetection时遇到了如何有效保存训练日志的问题。
标准日志保存方法
PaddleDetection提供了几种简单有效的方式来保存训练日志:
- 使用Linux重定向命令:这是最简单直接的方法,通过Linux系统的输出重定向功能,可以将所有终端输出保存到文件中。
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m paddle.distributed.launch --log_dir=log --gpus 0,1,2,3 tools/train.py -c configs/picodet/picodet_s_shufflenetv2_416_coco.yml --eval &> train.log 2>&1 &
这条命令中:
&> train.log
表示将标准输出和标准错误都重定向到train.log文件2>&1
确保错误输出也被捕获- 最后的
&
表示在后台运行
- tee命令:如果希望在保存日志的同时还能在终端看到输出,可以使用tee命令:
python tools/train.py -c config.yml | tee train.log
高级日志配置方法
对于需要更精细控制日志输出的开发者,可以通过修改PaddleDetection的日志系统来实现:
-
理解日志系统架构:
- PaddleDetection使用Python标准库logging模块构建日志系统
- 日志配置主要在
ppdet/utils/logger.py
文件中 - 系统会为不同模块创建多个logger实例
-
自定义日志路径: 可以通过修改全局变量来控制日志输出路径,具体实现步骤:
- 创建全局变量模块
global_variables.py
- 在训练脚本中提前设置日志路径
- 修改logger.py中的setup_logger函数读取全局变量
- 创建全局变量模块
-
日志级别控制: 可以通过环境变量或代码修改日志级别,过滤不同重要程度的信息:
import logging logging.getLogger().setLevel(logging.INFO)
日志内容分析
PaddleDetection的训练日志通常包含以下重要信息:
- 训练配置参数
- 数据加载情况
- 训练过程中的损失值和评估指标
- 验证集上的性能表现
- 训练耗时和资源使用情况
最佳实践建议
- 对于常规使用,推荐使用简单的输出重定向方法
- 长期训练任务建议结合nohup使用,防止终端断开导致训练中断
- 分布式训练时,注意不同进程的日志可能会混合,可以考虑按进程ID分开保存
- 定期归档和清理日志文件,避免占用过多磁盘空间
通过合理配置和使用PaddleDetection的日志系统,开发者可以更好地监控训练过程,为模型优化和问题排查提供有力支持。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

Ascend Extension for PyTorch
Python
62
95

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
208
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
576

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193