PaddleDetection训练日志保存方法详解
2025-05-17 23:53:09作者:滑思眉Philip
背景介绍
在使用PaddleDetection进行模型训练时,训练过程中的日志信息对于开发者来说非常重要。这些日志不仅记录了训练过程中的关键指标变化,还能帮助开发者分析模型性能、调试参数设置以及监控训练进度。然而,很多开发者在使用PaddleDetection时遇到了如何有效保存训练日志的问题。
标准日志保存方法
PaddleDetection提供了几种简单有效的方式来保存训练日志:
- 使用Linux重定向命令:这是最简单直接的方法,通过Linux系统的输出重定向功能,可以将所有终端输出保存到文件中。
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m paddle.distributed.launch --log_dir=log --gpus 0,1,2,3 tools/train.py -c configs/picodet/picodet_s_shufflenetv2_416_coco.yml --eval &> train.log 2>&1 &
这条命令中:
&> train.log表示将标准输出和标准错误都重定向到train.log文件2>&1确保错误输出也被捕获- 最后的
&表示在后台运行
- tee命令:如果希望在保存日志的同时还能在终端看到输出,可以使用tee命令:
python tools/train.py -c config.yml | tee train.log
高级日志配置方法
对于需要更精细控制日志输出的开发者,可以通过修改PaddleDetection的日志系统来实现:
-
理解日志系统架构:
- PaddleDetection使用Python标准库logging模块构建日志系统
- 日志配置主要在
ppdet/utils/logger.py文件中 - 系统会为不同模块创建多个logger实例
-
自定义日志路径: 可以通过修改全局变量来控制日志输出路径,具体实现步骤:
- 创建全局变量模块
global_variables.py - 在训练脚本中提前设置日志路径
- 修改logger.py中的setup_logger函数读取全局变量
- 创建全局变量模块
-
日志级别控制: 可以通过环境变量或代码修改日志级别,过滤不同重要程度的信息:
import logging logging.getLogger().setLevel(logging.INFO)
日志内容分析
PaddleDetection的训练日志通常包含以下重要信息:
- 训练配置参数
- 数据加载情况
- 训练过程中的损失值和评估指标
- 验证集上的性能表现
- 训练耗时和资源使用情况
最佳实践建议
- 对于常规使用,推荐使用简单的输出重定向方法
- 长期训练任务建议结合nohup使用,防止终端断开导致训练中断
- 分布式训练时,注意不同进程的日志可能会混合,可以考虑按进程ID分开保存
- 定期归档和清理日志文件,避免占用过多磁盘空间
通过合理配置和使用PaddleDetection的日志系统,开发者可以更好地监控训练过程,为模型优化和问题排查提供有力支持。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
462
3.44 K
Ascend Extension for PyTorch
Python
269
309
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
190
75
暂无简介
Dart
714
171
React Native鸿蒙化仓库
JavaScript
284
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
421
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
119
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692