【亲测免费】 Materials Discovery 项目教程
1. 项目介绍
Materials Discovery 是由 Google DeepMind 开发的一个开源项目,旨在通过机器学习方法加速无机晶体的发现。该项目的核心任务是利用图网络(Graph Networks)来扩展机器学习方法,以解决材料科学中的基本问题。通过该项目,研究人员可以访问到超过 520,000 种新发现的稳定材料,这些材料的数据集是通过密度泛函理论(DFT)计算得出的。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的环境中已经安装了以下依赖:
- Python 3.7 或更高版本
- Jupyter Notebook
- 其他必要的 Python 库(如 NumPy, Pandas 等)
您可以通过以下命令安装所需的 Python 库:
pip install -r requirements.txt
2.2 下载项目
首先,克隆 Materials Discovery 项目的代码库到本地:
git clone https://github.com/google-deepmind/materials_discovery.git
cd materials_discovery
2.3 运行示例
项目中提供了一些 Jupyter Notebook 示例,您可以通过以下步骤运行这些示例:
-
启动 Jupyter Notebook:
jupyter notebook -
在浏览器中打开 Jupyter Notebook 界面,导航到
notebooks目录,选择一个示例文件(如example_notebook.ipynb)并运行。
2.4 数据集加载
项目的数据集存储在 Google Cloud Bucket 中。您可以通过以下代码示例加载数据集:
import pandas as pd
# 加载数据集
dataset_url = "https://storage.googleapis.com/materials_discovery/dataset.csv"
df = pd.read_csv(dataset_url)
# 查看数据集的前几行
print(df.head())
3. 应用案例和最佳实践
3.1 材料筛选
Materials Discovery 项目的一个典型应用是材料筛选。通过分析数据集中的材料属性,研究人员可以快速筛选出符合特定要求的材料。例如,筛选出具有低形成能和高稳定性的材料。
3.2 模型训练
项目中提供了两种模型的定义:GNoME 和 Nequip。您可以使用这些模型来训练自己的材料预测模型。以下是一个简单的模型训练示例:
from models import GNoMEModel
# 初始化模型
model = GNoMEModel()
# 加载训练数据
train_data = load_training_data()
# 训练模型
model.train(train_data)
3.3 可视化分析
项目中的 Jupyter Notebook 示例提供了数据可视化的功能,帮助研究人员更好地理解材料属性和模型预测结果。
4. 典型生态项目
4.1 Materials Project
Materials Project 是一个广泛使用的材料数据库,提供了大量的材料数据和计算工具。Materials Discovery 项目与 Materials Project 有很好的兼容性,研究人员可以将 Materials Discovery 的数据集与 Materials Project 的数据集结合使用。
4.2 VASP
VASP(Vienna Ab initio Simulation Package)是一个用于密度泛函理论计算的软件包。Materials Discovery 项目的数据集是通过 VASP 计算得出的,因此研究人员可以使用 VASP 进一步分析和验证这些材料。
4.3 JAX
JAX 是一个用于高性能数值计算的 Python 库,特别适合用于机器学习和深度学习任务。Materials Discovery 项目中的 Nequip 模型是基于 JAX 实现的,研究人员可以使用 JAX 进行高效的模型训练和推理。
通过本教程,您应该能够快速上手 Materials Discovery 项目,并利用其强大的功能进行材料科学研究。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0126
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00