利用Prepack将React渲染到HTML的创新实践
在最近的一次为期两天的黑客马拉松中,一个有趣的项目引起了我们的注意——它探索了如何利用Facebook的实验性项目Prepack,实现在构建时预编译React应用,以优化服务器端渲染。这个项目的目标是消除React库在最终包中的存在,仅留下最小化的逻辑来生成HTML。
项目介绍
这个项目采用了一种创新的方式,对ReactDOMServer的现有实现进行复制和修改,使其能与Prepack内部的对象和值模型协同工作。项目的核心在于,当遇到在构建时未知的抽象值时,Prepack会注入运行时辅助函数(如“escapeHTML”),用于安全地嵌入字符串。此外,对于循环渲染数组的情况,也有相应的处理逻辑。
项目技术分析
项目利用了Prepack的“firstRender”模式,该模式会剥离事件处理器和组件更新逻辑。通过识别并替换"ReactDOMServer.renderToString"方法调用,Prepack可以为特定场景生成服务器端渲染的优化代码。值得注意的是,整个过程无需虚拟DOM和React的其他抽象概念。
应用场景
虽然这是一个实验性的项目,但它展示了在性能敏感的应用场景,如新闻聚合网站、电商产品列表或任何需要高效服务器端渲染的应用中,这一技术的潜力。一旦Prepack成熟,它可能会成为生产环境中的强大工具。
项目特点
- 完全剔除React: 生成的代码不包含React和ReactDOMServer,只保留必要的HTML字符串和动态数据插入点。
- 出色的表现力: 在基准测试中,使用Prepack预编译的版本相比未预编译的版本,其执行时间从13.093毫秒大幅降至0.245毫秒。
- 易于设置: 提供了清晰的本地设置指南,以便开发者快速试用和探索。
结论
尽管目前Prepack仍处于实验阶段,但这个项目已经显示出其在优化服务器端渲染的巨大潜力。借助Prepack,原本几乎不可能的任务变得可能,而且只需短短的时间。未来,随着Prepack和React团队的合作深化,我们可以期待更多关于编译努力的成果。
如果你对该项目感兴趣,可以按照提供的设置指南尝试运行基准测试或进行本地实验。请记住,这仍然是一个实验项目,可能存在错误和不稳定情况。
## 设置指南
1. 克隆[Prepack](https://github.com/facebook/prepack)仓库至本地
2. 在Prepack根目录运行`yarn build`
3. 创建一个空的JS文件`${PREPACK_ROOT}/fb-www/input.js`
4. 修改`debug-fb-www`脚本中相关行,设为`true`
5. 将[Hacker News源码](https://github.com/facebook/prepack/blob/master/test/react/server-rendering/hacker-news.js)复制到`input.js`
6. 运行`yarn debug-fb-www`启动预编译
7. 预编译后的代码将会保存在`output.js`
让我们一起期待Prepack带来的更多创新和技术突破!
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C090
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00