利用Prepack将React渲染到HTML的创新实践
在最近的一次为期两天的黑客马拉松中,一个有趣的项目引起了我们的注意——它探索了如何利用Facebook的实验性项目Prepack,实现在构建时预编译React应用,以优化服务器端渲染。这个项目的目标是消除React库在最终包中的存在,仅留下最小化的逻辑来生成HTML。
项目介绍
这个项目采用了一种创新的方式,对ReactDOMServer的现有实现进行复制和修改,使其能与Prepack内部的对象和值模型协同工作。项目的核心在于,当遇到在构建时未知的抽象值时,Prepack会注入运行时辅助函数(如“escapeHTML”),用于安全地嵌入字符串。此外,对于循环渲染数组的情况,也有相应的处理逻辑。
项目技术分析
项目利用了Prepack的“firstRender”模式,该模式会剥离事件处理器和组件更新逻辑。通过识别并替换"ReactDOMServer.renderToString"方法调用,Prepack可以为特定场景生成服务器端渲染的优化代码。值得注意的是,整个过程无需虚拟DOM和React的其他抽象概念。
应用场景
虽然这是一个实验性的项目,但它展示了在性能敏感的应用场景,如新闻聚合网站、电商产品列表或任何需要高效服务器端渲染的应用中,这一技术的潜力。一旦Prepack成熟,它可能会成为生产环境中的强大工具。
项目特点
- 完全剔除React: 生成的代码不包含React和ReactDOMServer,只保留必要的HTML字符串和动态数据插入点。
- 出色的表现力: 在基准测试中,使用Prepack预编译的版本相比未预编译的版本,其执行时间从13.093毫秒大幅降至0.245毫秒。
- 易于设置: 提供了清晰的本地设置指南,以便开发者快速试用和探索。
结论
尽管目前Prepack仍处于实验阶段,但这个项目已经显示出其在优化服务器端渲染的巨大潜力。借助Prepack,原本几乎不可能的任务变得可能,而且只需短短的时间。未来,随着Prepack和React团队的合作深化,我们可以期待更多关于编译努力的成果。
如果你对该项目感兴趣,可以按照提供的设置指南尝试运行基准测试或进行本地实验。请记住,这仍然是一个实验项目,可能存在错误和不稳定情况。
## 设置指南
1. 克隆[Prepack](https://github.com/facebook/prepack)仓库至本地
2. 在Prepack根目录运行`yarn build`
3. 创建一个空的JS文件`${PREPACK_ROOT}/fb-www/input.js`
4. 修改`debug-fb-www`脚本中相关行,设为`true`
5. 将[Hacker News源码](https://github.com/facebook/prepack/blob/master/test/react/server-rendering/hacker-news.js)复制到`input.js`
6. 运行`yarn debug-fb-www`启动预编译
7. 预编译后的代码将会保存在`output.js`
让我们一起期待Prepack带来的更多创新和技术突破!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00