利用Prepack将React渲染到HTML的创新实践
在最近的一次为期两天的黑客马拉松中,一个有趣的项目引起了我们的注意——它探索了如何利用Facebook的实验性项目Prepack,实现在构建时预编译React应用,以优化服务器端渲染。这个项目的目标是消除React库在最终包中的存在,仅留下最小化的逻辑来生成HTML。
项目介绍
这个项目采用了一种创新的方式,对ReactDOMServer的现有实现进行复制和修改,使其能与Prepack内部的对象和值模型协同工作。项目的核心在于,当遇到在构建时未知的抽象值时,Prepack会注入运行时辅助函数(如“escapeHTML”),用于安全地嵌入字符串。此外,对于循环渲染数组的情况,也有相应的处理逻辑。
项目技术分析
项目利用了Prepack的“firstRender”模式,该模式会剥离事件处理器和组件更新逻辑。通过识别并替换"ReactDOMServer.renderToString"方法调用,Prepack可以为特定场景生成服务器端渲染的优化代码。值得注意的是,整个过程无需虚拟DOM和React的其他抽象概念。
应用场景
虽然这是一个实验性的项目,但它展示了在性能敏感的应用场景,如新闻聚合网站、电商产品列表或任何需要高效服务器端渲染的应用中,这一技术的潜力。一旦Prepack成熟,它可能会成为生产环境中的强大工具。
项目特点
- 完全剔除React: 生成的代码不包含React和ReactDOMServer,只保留必要的HTML字符串和动态数据插入点。
- 出色的表现力: 在基准测试中,使用Prepack预编译的版本相比未预编译的版本,其执行时间从13.093毫秒大幅降至0.245毫秒。
- 易于设置: 提供了清晰的本地设置指南,以便开发者快速试用和探索。
结论
尽管目前Prepack仍处于实验阶段,但这个项目已经显示出其在优化服务器端渲染的巨大潜力。借助Prepack,原本几乎不可能的任务变得可能,而且只需短短的时间。未来,随着Prepack和React团队的合作深化,我们可以期待更多关于编译努力的成果。
如果你对该项目感兴趣,可以按照提供的设置指南尝试运行基准测试或进行本地实验。请记住,这仍然是一个实验项目,可能存在错误和不稳定情况。
## 设置指南
1. 克隆[Prepack](https://github.com/facebook/prepack)仓库至本地
2. 在Prepack根目录运行`yarn build`
3. 创建一个空的JS文件`${PREPACK_ROOT}/fb-www/input.js`
4. 修改`debug-fb-www`脚本中相关行,设为`true`
5. 将[Hacker News源码](https://github.com/facebook/prepack/blob/master/test/react/server-rendering/hacker-news.js)复制到`input.js`
6. 运行`yarn debug-fb-www`启动预编译
7. 预编译后的代码将会保存在`output.js`
让我们一起期待Prepack带来的更多创新和技术突破!
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00