Statistics for Machine Learning 项目最佳实践教程
2025-04-24 06:23:10作者:宗隆裙
1、项目介绍
Statistics for Machine Learning 是一个开源项目,旨在分享机器学习中常用的统计方法实现。该项目基于 Python 语言,包含了大量的统计概念、概率分布以及用于机器学习的统计模型的实现。通过该项目,开发者可以更好地理解和应用统计方法,从而提高机器学习模型的性能。
2、项目快速启动
在开始使用 Statistics for Machine Learning 项目之前,请确保您已经安装了 Python 环境以及以下依赖库:
- NumPy
- SciPy
- Matplotlib
您可以通过以下步骤快速启动该项目:
# 克隆项目仓库
git clone https://github.com/PacktPublishing/Statistics-for-Machine-Learning.git
# 进入项目目录
cd Statistics-for-Machine-Learning
# 安装依赖库
pip install -r requirements.txt
# 执行示例脚本
python examples/example_script.py
3、应用案例和最佳实践
以下是一些应用案例和最佳实践,帮助您更好地使用 Statistics for Machine Learning 项目:
案例一:使用统计方法进行特征选择
在进行机器学习任务时,特征选择是一项重要步骤。通过该项目提供的统计方法,您可以评估不同特征的重要性,并选择最相关的特征。
from statistics_for_machine_learning.methods import select_k_best
# 假设 X 是特征数据,y 是目标变量
X = ...
y = ...
# 选择相关性最强的 K 个特征
selected_features = select_k_best(X, y, k=5)
案例二:使用概率分布进行数据生成
在实际应用中,我们常常需要生成特定分布的数据。通过该项目提供的概率分布,您可以创建满足特定分布规律的随机数据。
from statistics_for_machine_learning.distributions import normal_distribution
# 生成正态分布的随机数据
data = normal_distribution(mean=0, std_dev=1, size=1000)
4、典型生态项目
Statistics for Machine Learning 项目可以与其他开源项目结合使用,形成更加丰富的机器学习生态系统。以下是一些典型的生态项目:
- Scikit-learn:一个广泛使用的机器学习库,提供了各种算法的实现。
- TensorFlow:一个用于高性能数值计算的开源软件库,特别适用于深度学习任务。
- Pandas:一个强大的数据分析库,可以用于数据处理和清洗。
通过将这些项目与 Statistics for Machine Learning 结合使用,您可以构建更加完善和高效的机器学习工作流。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355