Elasticsearch Pinyin Analysis 插件使用教程
1. 项目介绍
Elasticsearch Pinyin Analysis 插件是一个用于将中文汉字转换为拼音的插件。它支持 Elasticsearch 和 OpenSearch 的主要版本,能够帮助用户在搜索和分析中文文本时,将中文转换为拼音,从而提高搜索的准确性和效率。
该插件提供了多种配置选项,用户可以根据需求自定义拼音转换的行为,例如保留全拼、保留首字母、保留非中文字符等。
2. 项目快速启动
2.1 安装插件
首先,您需要下载并安装 Elasticsearch Pinyin Analysis 插件。您可以通过以下命令使用 Elasticsearch 的插件管理工具进行安装:
bin/elasticsearch-plugin install https://get.infini.cloud/elasticsearch/analysis-pinyin/8.4.1
请根据您的 Elasticsearch 版本替换上述命令中的版本号。
2.2 创建索引并配置分析器
安装完成后,您可以在 Elasticsearch 中创建一个索引,并配置自定义的拼音分析器。以下是一个示例:
PUT /medcl
{
"settings": {
"analysis": {
"analyzer": {
"pinyin_analyzer": {
"tokenizer": "my_pinyin"
}
},
"tokenizer": {
"my_pinyin": {
"type": "pinyin",
"keep_separate_first_letter": false,
"keep_full_pinyin": true,
"keep_original": true,
"limit_first_letter_length": 16,
"lowercase": true,
"remove_duplicated_term": true
}
}
}
}
}
2.3 测试分析器
创建索引后,您可以使用以下命令测试拼音分析器的效果:
GET /medcl/_analyze
{
"text": ["刘德华"],
"analyzer": "pinyin_analyzer"
}
2.4 创建映射
接下来,您可以为索引创建映射,以便在搜索时使用拼音字段:
POST /medcl/_mapping
{
"properties": {
"name": {
"type": "keyword",
"fields": {
"pinyin": {
"type": "text",
"store": false,
"term_vector": "with_offsets",
"analyzer": "pinyin_analyzer",
"boost": 10
}
}
}
}
}
2.5 索引文档
现在,您可以索引一些文档,并使用拼音字段进行搜索:
POST /medcl/_create/andy
{
"name": "刘德华"
}
2.6 搜索文档
使用拼音字段进行搜索:
curl http://localhost:9200/medcl/_search?q=name.pinyin:liu
3. 应用案例和最佳实践
3.1 中文搜索优化
在电商、新闻、社交媒体等应用中,用户常常使用拼音进行搜索。通过使用 Pinyin Analysis 插件,可以提高搜索的准确性,使用户能够更方便地找到所需内容。
3.2 多语言支持
在国际化应用中,Pinyin Analysis 插件可以帮助用户在多语言环境中进行搜索。例如,用户可以使用拼音搜索中文内容,同时也可以使用其他语言进行搜索。
3.3 拼音输入法
在拼音输入法应用中,Pinyin Analysis 插件可以用于将用户输入的拼音转换为汉字,从而提高输入效率。
4. 典型生态项目
4.1 Elasticsearch
Elasticsearch 是一个分布式搜索和分析引擎,广泛应用于日志分析、全文搜索、安全分析等领域。Pinyin Analysis 插件是 Elasticsearch 生态系统中的一个重要组件,能够帮助用户更好地处理中文文本。
4.2 OpenSearch
OpenSearch 是一个开源的搜索和分析引擎,基于 Elasticsearch 和 Kibana 构建。Pinyin Analysis 插件同样支持 OpenSearch,用户可以在 OpenSearch 中使用该插件进行中文拼音转换。
4.3 Kibana
Kibana 是 Elasticsearch 的可视化工具,用户可以通过 Kibana 对 Elasticsearch 中的数据进行可视化分析。Pinyin Analysis 插件可以帮助用户在 Kibana 中更好地处理中文数据。
通过以上步骤,您可以快速上手并使用 Elasticsearch Pinyin Analysis 插件,提升中文搜索和分析的效率。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00