CVXPY 广播维度错误分析与解决方案
2025-06-06 12:43:09作者:宣利权Counsellor
问题背景
在使用CVXPY进行凸优化建模时,经常会遇到维度不匹配的问题。本文将通过一个实际案例,分析如何解决CVXPY中的广播维度错误,帮助开发者更好地理解CVXPY的矩阵运算规则。
错误现象
在尝试构建一个处理器调度优化模型时,开发者遇到了以下错误:
ValueError: Cannot broadcast dimensions (16, 12) (12,)
这个错误表明在尝试对形状为(16,12)和(12,)的两个矩阵进行广播操作时出现了问题。
问题分析
该优化问题的目标是确定处理器在不同时间段的运行速度,以最小化总能耗。关键变量包括:
theta_var: 形状为(T,n)=(16,12)的变量矩阵s_var: 长度为T=16的处理器速度变量
错误主要出现在两个约束条件中:
-
处理器速度约束:
s_var == cp.sum(cp.multiply(theta_var, W), axis=1)- 这里W的形状是(12,),而theta_var是(16,12)
- 直接相乘会导致广播失败
-
Theta上限约束:
theta_var <= W- 同样存在形状不匹配的问题
解决方案
正确的做法是显式地扩展W的维度,使其与theta_var的形状匹配:
# 修改处理器速度约束
s_var == cp.sum(cp.multiply(theta_var, W[None, :]), axis=1)
# 修改Theta上限约束
theta_var <= W[None, :]
W[None, :]操作将W从形状(12,)变为(1,12),这样在与(16,12)的矩阵运算时,NumPy/CVXPY可以正确地沿第一个维度广播。
完整修正代码
import cvxpy as cp
import numpy as np
# 输入参数
A = np.array([1, 3, 4, 6, 7, 9, 11, 12, 13, 13, 10, 12])
D = np.array([6, 13, 10, 10, 10, 13, 14, 16, 16, 17, 17, 17])
theta = np.array([[1, 0.375, 0.5, 1.5, 3, 0.75, 1, 0.25, 1, 1.75, 0.125, 1.25]])
W = np.array([5, 3.75, 3, 6, 9, 3, 3, 1, 3, 7, 0.875, 6.25])
s_min = 1
s_max = 6
T = 16
n = 12
# 定义变量
theta_var = cp.Variable((T, n)) # Theta矩阵
s_var = cp.Variable(T) # 处理器速度
# 目标函数:最小化总能耗
objective = cp.Minimize(cp.sum(s_var))
# 约束条件
constraints = [
s_min <= s_var, # 处理器最小速度
s_var <= s_max, # 处理器最大速度
cp.sum(theta_var, axis=1) == 1, # Theta每行和为1
s_var == cp.sum(cp.multiply(theta_var, W[None, :]), # 处理器速度计算
theta_var >= 0, # Theta非负
theta_var <= W[None, :] # Theta上限
]
# 求解问题
problem = cp.Problem(objective, constraints)
problem.solve()
# 输出结果
print("最小能耗:", problem.value)
print("最优Theta:", theta_var.value)
print("最优处理器速度:", s_var.value)
经验总结
- 在CVXPY中进行矩阵运算时,务必注意变量的形状
- 广播操作需要显式地匹配维度,可以通过
None或np.newaxis增加维度 - 调试时可以先打印各变量的shape,确认维度匹配后再构建约束
- CVXPY的约束条件构建与NumPy的广播规则一致,理解NumPy广播机制有助于CVXPY建模
通过这个案例,我们可以看到在凸优化建模中正确处理矩阵维度的重要性。掌握这些技巧可以避免常见的维度错误,提高建模效率。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1