Axon神经网络框架中XOR训练问题的分析与解决
2025-07-10 14:25:28作者:郁楠烈Hubert
在机器学习领域,XOR(异或)问题是一个经典的基准测试案例。最近在使用Elixir生态中的Axon神经网络框架时,开发者遇到了一个典型问题:模型在训练过程中损失值逐渐增大直至变为NaN(非数字)。本文将深入分析问题原因,并提供完整的解决方案。
问题现象
当使用Axon构建一个简单的神经网络来学习XOR运算时,模型表现异常:
- 初始阶段损失值约为0.77
- 第一个epoch结束后损失值变为NaN
- 后续所有epoch都输出NaN
- 预测结果也全部为NaN
网络结构分析
原始模型采用了两层全连接网络:
x1_input = Axon.input("x1", shape: {nil, 1})
x2_input = Axon.input("x2", shape: {nil, 1})
model =
x1_input
|> Axon.concatenate(x2_input)
|> Axon.dense(8, activation: :tanh)
|> Axon.dense(1, activation: :sigmoid)
这个结构理论上足以解决XOR问题,包含:
- 输入层:两个二进制输入
- 隐藏层:8个神经元,tanh激活函数
- 输出层:1个神经元,sigmoid激活函数
问题根源
经过深入分析,发现问题主要源于以下几个方面:
- 学习率问题:原始代码使用SGD优化器时未指定学习率,默认值可能过大
- 权重初始化:某些初始化方法可能导致梯度爆炸
- 损失函数选择:虽然binary_cross_entropy适合二分类,但需要配合适当的学习率
- 数值稳定性:tanh和sigmoid的组合在某些情况下可能导致梯度消失或爆炸
解决方案
经过验证,有以下几种有效的解决方法:
方法一:使用GitHub最新版本
Mix.install([
{:axon, github: "elixir-nx/axon", override: true},
{:nx, github: "elixir-nx/nx", sparse: "nx", override: true},
{:exla, github: "elixir-nx/nx", sparse: "exla", override: true},
{:kino_vega_lite, ">= 0.1.6"}
])
方法二:调整优化器参数
model
|> Axon.Loop.trainer(:binary_cross_entropy, :sgd, learning_rate: 0.01)
|> Axon.Loop.run(data, %{}, epochs: epochs, iterations: 1000)
方法三:更换优化器
model
|> Axon.Loop.trainer(:binary_cross_entropy, :adam)
|> Axon.Loop.run(data, %{}, epochs: epochs, iterations: 1000)
最佳实践建议
- 学习率调整:对于SGD优化器,建议初始学习率设为0.01或更小
- 优化器选择:Adam优化器通常更稳定,适合初学者
- 激活函数组合:考虑使用ReLU作为隐藏层激活函数
- 梯度裁剪:添加梯度裁剪防止梯度爆炸
- 权重初始化:尝试不同的初始化方法
验证结果
采用解决方案后,模型能够:
- 稳定训练,不再出现NaN
- 准确预测XOR运算结果
- 在可视化中清晰展示决策边界
总结
XOR问题虽然简单,但能很好地验证神经网络框架的稳定性。通过这次问题排查,我们不仅解决了具体的技术问题,更深入理解了神经网络训练中的数值稳定性问题。对于Elixir开发者来说,掌握这些调试技巧将有助于构建更健壮的机器学习模型。
建议开发者在遇到类似问题时:
- 首先检查框架版本
- 调整超参数(特别是学习率)
- 尝试不同的优化器
- 添加监控机制,及早发现数值异常
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
26